DOCKET NO. **SA-516**

EXHIBIT NO. 20G

NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C.

JET A FLIGHT TEST SAMPLES (125 pages)

JET A FLIGHT TEST SAMPLES

Sampling and Analysis of Vapors from the Center Wing Tank of a Test Boeing 747-100 Aircraft

Final Report

Prepared By:

John C. Sagebiel, Ph.D. Energy and Environmental Engineering Center Desert Research Institute University of Nevada Reno, Nevada

Prepared For:

National Transportation Safety Board Office of Research and Engineering 490 L'Enfant Plaza East, S.W. Washington, DC

November, 1997

ACKNOWLEDGEMENTS

I would like to thank the National Transportation Safety Board for their financial support of this project. I would also like to recognize the technical assistance of Drs. Merritt Birky and Daniel Bower of the NTSB for their thoughts and insights on this work. I would like to recognize the assistance of DRI personnel Larry Sheetz, Greg Harshfield, and Mike Keith, as well as the support and assistance of Dr. Barbara Zielinska, Director of the Organic Analysis Laboratory. For the final design and actual construction of the sampling device used in the field sampling phase, I would like to recognize Tom Peacock and Bob Lonneman of Boeing. I would also like to acknowledge Bob Lonneman's role and the operator of the sampling device during the flight tests. Finally I thank Jim Woodrow of the University of Nevada, Reno, and Joe Shepherd of the California Institute of Technology for their assistance and insights.

TABL	E OF	CONT	FENTS
------	------	------	--------------

Ackn	owledge	ment	Page i
EXE	CUTIVE	SUMMARY	EX-1
1.0	INTR	ODUCTION	1-1
	1.1	Background	1-1
	1.2	Guide to Report	1-2
2.0	EXPE	RIMENTAL METHODS	2-1
	2.1	Vapor Sampling System	2-1
	2.2	Sampler Operation	2-7
	2.3	Flight Operations Summary	2-8
	2.4	Canister Handling	2-9
		2.4.1 Cleaning and Evacuation	2-10
		2.4.2 Pressurization	2-10
	2.5	Canister Analysis	2-11
		2.5.1 Calibration	2-12
		2.5.2 Quality Assurance	2-13
		2.5.3 Data Processing	2-14
		2.5.4 Reporting	2-17
3.0	RESU	LTS AND DISCUSSION	3-1
	3.1	Overview of Results	3-1
	3.2	Summary of Results as Total Hydrocarbons	3-1
	3.3	Summary of Speciation	3-4
	3.4	Summary of Carbon Groups	3-7
	3.5	Changes Seen in Profiles	3-11
	3.6	Comparison with California Institute of Technology	
		Vapor Pressure Results	3-16
	3.7	Results of Freon Component Analysis	3-17
	3.8	Results as Fuel to Air Mole and Mass Ratios	3-21
	3.9	Summary of Results	3-23
4.0	CONC	CLUSIONS AND RECOMMENDATIONS	4-1
APPE	ENDIX A	A: Field Sampling Sheets	
APPE	ENDIX I	3: Chain-of-Custody Records for Canister Samples	
APPE	ENDIX (C: Individual Sample Gas Chromatographic Results	
APPE	ENDIX I	D: Merged Gas Chromatographic Results	

LIST OF TABLES

		Page
Table 2-1.	Summary of Flight Operations	2-9
Table 2-2.	Results of Replicate Analyses	2-14
Table 3-1.	Summary of Samples Collected and Conditions	
	at Time of Sample Collection	3-2
Table 3-2.	Increases in Concentration at Altitude over Taxi Values	3-3
Table 3-3.	Percent of Mass Identified for Each Sample	3-5
Table 3-4.	Highest Average Concentration Species Identified	3-6
Table 3-5.	Summary of Carbon Groups Totals as ppmC	3-8
Table 3-6.	Summary of Carbon Groups Totals as Percent of Each Sample	3-9
Table 3-7.	Average Fraction of Each Carbon Group and Mass Mean	
	Carbon Value	3-10
Table 3-8.	Determination of Partial Pressure of Hydrocarbon Vapors	
	in the CWT	3-16
Table 3-9.	Results of Freon Components Analysis	3-19
Table 3-10.	Fuel to Air Mole and Mass Ratios for CWT Air Samples	3-22

LIST OF FIGURES

Figure 2-1.	Vapor Sampler Installed in Forward Cargo Hold	2-3
Figure 2-2.	Top View of Vapor Sampler	2-4
Figure 2-3.	Close-up View of Canister Connections in Vapor Sampler	2-5
Figure 2-4.	Exterior Side View of Sampler	2-6
Figure 2-5.	Sampling Protocol	2-7
Figure 3-1.	Change in Fuel Vapor Concentration with Change in Specific Volume	3-4
Figure 3-2.	Comparison of Total Hydrocarbons at Each Elevation	3-9
Figure 3-3.	Comparison of C3 to C6 Fractions at Taxi	3-12
Figure 3-4.	Comparison of C3 to C6 Fractions at 10,000'	3-12
Figure 3-5.	Comparison of C3 to C6 Fractions at 14,000'	3-13
Figure 3-6.	Comparison of C7 to C12 Fractions at Taxi	3-13
Figure 3-7.	Comparison of C7 to C12 Fractions at 10,000'	3-14
Figure 3-8.	Comparison of C7 to C12 Fractions at 14,000'	3-14
Figure 3-9.	Comparison of C3 to C6 Concentrations at 14,000'	3-15
Figure 3-10.	Comparison of C7 to C12 Concentrations at 14,000'	3-15
Figure 3-11.	Comparison of DRI Flight Test Samples with CIT	
	Vapor Pressure Measurements	3-17
Figure 3-12.	Comparison of Observed Freon Concentrations with	
	Calculated Values	3-20
Figure 3-13	Fuel to Air Mass Ratio vs. Altitude for CWT Samples	3-22

EXECUTIVE SUMMARY

Background

This report describes the involvement of the Desert Research Institute (DRI) of the University of Nevada, in assisting the National Transportation Safety Board (NTSB) with the test flights of a 747 from New York's Kennedy Airport in July 1997. The objective of this work was to collect air samples from the Center Wing Tank of the aircraft during taxi and during flight and analyze the samples for jet fuel components.

Field Operations

The sampler, which was designed by personnel from NTSB, DRI and Boeing, is a six-port manifold contained within an aluminum case with a main shut-off valve at the inlet and six shut-off valves, one for each of the six canisters. To collect a sample, one sample bottle is opened to purge the lines and manifold and then shut. The next bottle is then immediately opened to collect the actual sample. The six bottles would thus allow three samples to be collected and it was decided that samples would be taken: 1) during taxi; 2) at approximately 10,000 feet during climb; and 3) at approximately 14,000 feet during climb. The sample canisters were cleaned, evacuated and checked for contamination at DRI prior to being sent to New York.

The sampler was installed in the test aircraft on Wednesday and Thursday, July 9th and 10th, 1997. On the 10th, it was tested by applying vacuum to the entire system for 4.5 hours. No change was detected in the vacuum level. The test flights took place the 15th and 16th of July, 1997, personnel from Boeing operated the sampler during those flights.

EX-1

Laboratory Analysis

The canisters were returned to DRI via overnight courier. Analysis approximately followed EPA method TO-14 for C2 to C12 hydrocarbons. Calibration was performed with a certified standard of 100 ppm benzene in nitrogen. The gas chromatograph was equipped with a 60 m x 0.32 mm DB-1 (poly methyl siloxane) column and dual detector system (FID and ECD). The oven temperature started with a 2 minute hold at -65 °C and increased to 220 °C at 6 degrees per minute.

Results

The results showed between 60 and 110 ppthC of total fuel components in the vapor phase, which corresponded to fuel-to-air mass ratios between 0.03 and 0.05. The concentration went up with altitude and went from near or below the lower flammability limit at taxi to above it during flight. When converted to partial pressure, the results closely matched vapor pressure predictions made by the California Institute of Technology. Confirmation that the samples were representative of the vapor in the fuel tank was aided by the analysis of a non-reactive gas phase component that was present in the fuel tank. The constant concentration of this tracer within a given flight confirmed the well-mixed nature of the tank, and the loss of tracer as the flight tests progressed was explained by pressure and temperature changes during flight. The concentrations were similar at each altitude in terms of total mass in the vapor phase, but the composition changed from flight to flight by shifting from lighter to heavier components, a consequence of "weathering" of the fuel during the flights. However, since weathering did not reduce the total hydrocarbon concentration, the danger of explosion from weathered fuel is not lower than that from the fresh fuel.

EX-2

1.0 INTRODUCTION

1.1 Background

As part of the investigation of accident DCA96MA070 (the crash of a 747-131, N93119, operated as TWA Flight 800), the National Transportation Safety Board (NTSB) planned a series of test flights using a rented Boeing 747-121 series aircraft similar to the one involved in the crash. The objective of these tests was to learn as much as possible about operating conditions just prior to the crash. One of the many specific tasks of these test flights was to determine the concentration of fuel vapors in the Center Wing Tank (CWT) of the test aircraft. In late June 1997 the NTSB requested the Desert Research Institute (DRI) to collect air samples from the Center Wing Tank of the test aircraft and during flight and analyze the samples for jet fuel components.

DRI has extensive experience in the use of pre-evacuated stainless-steel canisters for sample collection from various sources. DRI has used this technology for samples of ambient air, automobile and diesel truck exhaust, fireplace smoke, soil-gas vapors, and other locations where representative samples of air containing compounds of interest are needed. Once the sample is preserved in the canister, it can be safely transported back to DRI's laboratory in Reno, Nevada, for analysis. The fuel vapors targeted here were hydrocarbon species in the range of approximately four to twelve carbon atoms, which is the same range normally targeted in ambient air sampling for photochemical smog precursors. This is the exact range that DRI's laboratories have extensive experience in determining and quantifying.

1.2 Guide to Report

This section has provided some background as to the nature and origins of the project. Section 2 details the experimental methods used in both the field and laboratory phases of the project. The results are summarized in Section 3 and some conclusions and recommendations are provided in Section 4. Appendix A contains the field sampling sheets, Appendix B contains the chain-of-custody forms for the canisters, Appendix C has the individual sample canister results presented, while Appendix D contains the merged database for all sample canisters.

2.0 EXPERIMENTAL METHODS

This section describes both the field and laboratory methods used in this project. It also contains a description of the quality control efforts used.

2.1 Vapor Sampling System

Six, one-liter stainless steel sample bottles were attached to a six-port manifold with one main shut-off valve at the manifold inlet and a shut-off valve for each of the six pre-evacuated sample bottles. Neither a pump, nor any other electrical components were used for vapor sampling during the flight tests to eliminate the possibility of electrical sparks that could ignite the fuel vapors. The first pre-evacuated bottle was used to purge and flush the sampling line and manifold with a fresh vapor sample at a pre-selected time after which the valve to this bottle was closed. Immediately, a second bottle was opened to collect the sample used for vapor analysis. This process was followed for each of the 3 samples that were collected during each of the three the flight tests. Consequently, six bottles were used to collect 3 samples for analysis.

The vapor collection manifold was connected to the center wing tank with 1/8 inch (outside diameter) stainless steel tubing that was sheathed from the front spar to the box containing the manifold with 1/2 inch (outside diameter) copper tubing in order to provide a double wall between the aircraft environment and the fuel vapors. The sampling tube entered the tank through the front spar and through an access panel on spanwise beam # 3. The tube extended about 12 inches into the space between spanwise beam # 3 and # 2. The end of the sampling line was about 30 inches from the tank bottom and about 35 inches left of the tank center line. The 1/8 inch sampling line was about 25 feet long for a line volume of approximately 0.016 liters, based on an inside

diameter of 0.065 inches. Thus, the purge bottle flushed the line approximately 60 times prior to taking the sample. The nearest temperature probes were on the thermocouple tree located at butt line 0 (BL0) in this bay and midway between spanwise beams 3 and 2. Thermocouple number 6170274 was at BL 0 (about 35 inches to the right of the sample line port), and about 36 inches above the tank floor. The data from this thermocouple at the time of sampling are presented in Table 3-1.

The manifold and 6 bottles were enclosed in an aluminum box that could be sealed to prevent any vapors from escaping into the pressurized aircraft environment. The sampler box with manifold system is shown in Figures 2-1, 2-2, 2-3 and 2-4, which show, respectively, the entire sampler installed in the test aircraft, the top view of the sampler with the canisters, a close up of the canister connections and an exterior view of the sampler showing the valves.

After installation, the system was tested by applying vacuum to the entire system for 4.5 hours with a vacuum gauge at the CWT end of the sample line. No change was detected in the vacuum level after the 4.5 hours. The vacuum gauge was then removed and the time to fill the canister measured at 15 seconds to atmospheric pressure. The canisters were then installed and the sampler readied for the first flight.

Figure 2-1 Vapor sampler installed in the forward cargo hold of the test aircraft. The enclosure is approximately 30" in front of the Front Spar. Part of the fresh water tank is visible on the right edge of the figure.

Figure 2-2. Top view of Sampler with Canisters Installed. Left front is attachment point for sample line to CWT.

Figure 2-3. Close-up view of sampler with canisters installed. Fitting attached to wall is canister valve which is operated from outside.

Figure 2-4. View of exterior of sampler. Black toggle switch is the operating lever for the canister valve.

2.2 Sampler Operation

The sampler operation protocol is reproduced here in Figure 2-5. The six bottles in the sampler would thus allow three samples to be collected and it was decided that these would be taken at: 1) taxi; 2) approximately 10,000 feet during climb; and 3) approximately 14,000 feet during climb. Each flight also had a field sampling log sheet, copies of which are included as Appendix A.

Figure 2-5. Sampling Protocol.

	Sampling Protocol (7/7/97)					
Pre Samp	Pre Sampling:					
1	0					
1.	Load canisters. Ensure fittings are tight.					
2.	Record position of canister on log sheet.					
	I.e., which canister number is attached to which valve.					
3.	Label Canister with respect to:					
	a) Location					
	b) Date					
	c) Intended use (i.e. purge or sample, ground sample or inflight)					
4.	Check to insure that all toggle valves are shut.					
5.	Open all canister valves. Listen for leaks.					
6.	Ensure log is filled out.					
7.	Close sample box, ensure all fittings are ready.					
Sampling						
1	At appropriate time, open purge bottle toggle valve					
2	Exactly 15 seconds later, shut purge bottle toggle valve.					
2.	and open sample bottle toggle valve					
3	Exactly 15 seconds later, shut sample bottle toggle valve					
3. 4	Record sample in log note any unusual events/conditions					
т.	Record sample in 105, note any unusual events/conditions.					
Post-Sam	pling:					
1.	Open sample box.					
2.	Close all canister valves.					
3.	Confirm that positions of canisters match log sheet.					
4.	Write actual use on canister tag, if different from plan.					
5.	Remove canisters and recap.					
6.	Box and return canisters to John Sagebiel using pre-addressed FedEx					
	labels.					

2.3 Flight Operations Summary

Three samples were collected during each of three flight tests which took place among other flights of the whole flight test program. This section will briefly describe the flight test program to put the vapor sample fights in context. The entire flight test program description is in the NTSB report: "Flight Test Group Chairman's Factual Report of Investigation."

Prior to the flight test program, approximately 50 gallons of Athens-blended fuel taken from an outboard wing tank of an aircraft that had flown from Athens to JFK was loaded into the center wing tank of the test aircraft. In order to ensure that the fuel sample was representative, a nominally empty tank truck was used to first remove approximately 3000 lb of fuel from the tank and then off-loaded approximately 1000 lb of fuel to flush the truck's pumping system. The truck then pumped approximately 50 gallons of fuel to the CWT of the test aircraft. This took place on Monday, July 14, 1997, prior to any flight operations. This fuel was left on board for all flights including those in which vapors were sampled.

The first three days' flight operations are summarized in Table 2-1 which includes information on which air conditioning packs were used, and how long they were on prior to flight. For each flight, rotation time is given as is the highest altitude attained during the flight and landing time. Finally, an indication is given as to on which flights vapor samples were collected, and a numeric designation for that flight which will be used in the data analysis in Section 3.

		A/C Packs	A/C Packs	Rotation	Highest	Landing	Vapor	Vapor
Date	Event	Used	on Time	Time	Altitude	Time	Sample	Flight #
7/14	Fuel added to CWT							
7/14	Flight	2, 3	0950	1237	17,500'	1910	No	
7/15	Preconditioning Flight	1, 2, 3	0845	1211	35,000'	1628	Yes	Flight 1
7/15	TWA Simulation Flight	1, 3	1628	2021	19,000'	2257	Yes	Flight 2
7/16	Flight	1, 3	0750	1044	35,000'	1628	No	
7/16	Flight	1, 2	1636	1955	17,500'	2241	Yes	Flight 3

Table 2-1. Summary of Flight Operations. All times are EDT.

The first test flight took place on Monday, July 14, and involved the use of air conditioning packs 2 and 3. The first flight in which samples were collected occurred on July 15, 1997, and involved all three air conditioning packs on at once. This flight was designed to pre-condition the aircraft and systems for the actual simulation flight and included a two-hour soak at 35,000 feet. The second vapor sampling flight was the TWA Flight 800 simulation flight and it was basically a continuous operation with the previous flight. The third flight in which vapor samples were collected, occurred on July 16, 1997; however, there was an additional flight in between which added to the weathering of the fuel. The difference between the two flights on July 16 was a change in which of the air conditioning packs were running. In the first flight, packs 1 and 3 were operated, and in the second flight, packs 1 and 2. Prior to each flight, the air conditioning packs were operated for approximately a three-hour period.

2.4 Canister Handling

This section briefly describes the canister handling practices before and after shipment of the canisters to the field site for the test flights.

2.4.1 Cleaning and Evacuation

Standard protocol for canisters cleaning at the DRI laboratory is six cycles of repeated pressurization and evacuation using humidified zero air (an extremely clean blend of 20% oxygen and 80% nitrogen), while heated in an oven at 140°C. Each pressure/vacuum cycle last approximately 40 minutes. Following the cleaning cycle, one canister of a lot of six is filled with the humidified zero air, equilibrated for 24 hours and analyzed. For this project the standard for cleanliness was less than 50 parts per billion of carbon (ppbC) total in the canister. Once certified clean, the test canister is evacuated to -29°Hg, fitted with a sample tag and stored with the other canisters from that lot. Canisters were then shipped to DRI personnel in New York, who oversaw installation and Boeing personnel who operated the sampler.

2.4.2 Pressurization

Once back at DRI following sampling, the canisters were pressurized to approximately +1 atm with dry zero air and allowed to equilibrate for 48 hours. This procedure served two purposes: it diluted the sample slightly and it served to stabilize the samples. In addition, analysis is easier as one does not have to use vacuum to pull samples out of the canisters, which would make reading volumes more difficult. The pressurization is a standard practice and is performed with a test-gauge and an inlet for controlling the pressurization flow. The test-gauge is a certified compound gauge that reads both vacuum and pressure. The initial vacuum in the canister is read, flow is started and run until a desired pressure is reached and then the final pressure is read. The initial and final pressures (gauge reading) are converted to absolute pressure by subtracting the atmospheric pressure (commonly 25"Hg at DRI's altitude). This gives the dilution factor.

For these canisters, which arrived with indicating pressures between +1 psi and -10"Hg, the dilution factors were between 2.5x and 4.5x. Once pressurized, the canisters were equilibrated for approximately 48 hours before analysis.

2.5 Canister Analysis

The analysis of whole air samples for speciated hydrocarbons is not a routine analysis. Our prior experience in collecting and analyzing samples of ambient air and samples specifically resulting from motor-vehicle emissions (in tunnels and from dynamometer exhaust) has identified several significant challenges that we have worked to overcome. These include the analytical column selection and performance, and the inlet system and recovery of the higher molecular weight compounds. This section will address these challenges and present the technical approach to the analysis of speciated hydrocarbons for this project.

For the specific challenges of this study, we selected a standard column which met all the needs of this project. For the C2-C12 range we used a DB-1 column (60 m long 0.32 mm i.d., 1 μ m film thickness polymethyl siloxane bonded phase). An oven program of -65 to 220 °C with an initial 2-min. hold and a 6 °C/min. program resolves most compounds in this range. The gas chromatograph is a Hewlett-Packard 5890 Series II, equipped with FID detector and an ECD (electron capture detector) with the column effluent split 9 parts to the FID and 1 part to the ECD. This allows us to monitor halogenated compounds on the ECD at the same time as the FID detects hydrocarbons.

The method we employ for injecting the sample on the DB-1 column involves a multi-port valve switching system that collects a small (ca. 0.09 ml) sample in a stainless steel loop, and upon switching, puts the sample loop in-line with the carrier gas which

forces the sample onto the column. Our inlet system has been modified to have an absolute minimum number of transfer lines and valves for getting the sample from the sample-loop to the column. In addition, the entire inlet is heated to prevent any condensation of compounds during the transfer.

Gas chromatography with flame ionization detector is the established technique for monitoring volatile hydrocarbons, ozone precursors, in ambient air. The DRI analytical procedure for analysis of C2-C12 hydrocarbons is consistent with the EPA document "Technical Assistance Document for Sampling and Analysis of Ozone Precursors" (October 1991, EPA/600-8-91/215).

2.5.1 Calibration

The GC/FID response is calibrated in ppmC, using primary calibration standards traceable to the National Institute of Standards and Technology (NIST) Standard Reference Materials (SRM). The NIST SRM 1805 (254 ppb of benzene in nitrogen) is generally used for calibrating the analytical system for C2-C12 hydrocarbon analysis, however, for this project a special standard of 100 ppm benzene in nitrogen was used. This standard was purchased from AGA gas, Cleveland, OH. Based on the uniform carbon response of the FID to hydrocarbons, the response factors determined from these calibration standards are used to convert area counts into concentration units (ppbC or ppmC) for every peak in the chromatogram.

Identification of individual compounds in an air sample is based on the comparison of linear retention indices (RI) with those RI values of authentic standard compounds, as well as with the RI values obtained by other laboratories performing the same type of analysis using the same chromatographic conditions (Auto/Oil Program,

Atmospheric Research and Exposure Assessment Laboratory, EPA). The DRI laboratory calibration table currently contains approximately 150 species, including all 55 target compounds listed in the EPA document "Technical Assistance Document for Sampling and Analysis of Ozone Precursors" (October 1991, EPA/600-8-91/215). The calibration list is contained in Appendix D.

All of the gas chromatographs are connected to a data acquisition system (ChromPerfect, designed and marketed by Justice Innovation, Inc.). The software performs data acquisition, peak integration and identification, hardcopy output, post-run calculations, calibrations, peak re-integration, and user program interfacing. Acquired data are automatically stored on a hard disk. A custom-designed database management system is used to confirm all peak identifications. This step is described below.

2.5.2 Quality Assurance

Quality assurance activities included canister cleaning and certification, calibration, blank system checks, daily calibration checks and replicate analyses of canister samples.

Canisters are cleaned as described above. Once a lot has been certified as clean the chromatograms of lot certification are stored in the laboratory's permanent files. Any lot that fails is sent back and re-cleaned and re-certified.

The instrument was calibrated at the beginning of this project and then single point calibration checks were run each day immediately after running a system blank. These steps confirm the cleanliness of the system and the accuracy of the calibrations.

The replicate analyses confirm the analytical system performance and serve as a secondary check on calibration. Standard procedures call for 10% of samples to be

replicated; however, it was decided to run extra replicates on this project to confirm the equilibration of the higher molecular weight compounds. The results are in Table 2-2.

	Date	1st Anal.	Replicate	1st Anal.	Replicate	%
Canister	Pressurized	Date	Date	Amount	Amount	Difference
DRI-F	16-Jul	20-Jul	22-Jul	101.6	103.5	1.9%
DRI-H	19-Jul	21-Jul	23-Jul	111.9	110.8	-1.0%
DRI-B	16-Jul	18-Jul	23-Jul	92.2	96.4	4.5%
DRI-N	19-Jul	21-Jul	23-Jul	95.3	96.4	1.1%

Table 2-2.Results of Replicate Analyses.

2.5.3 Data Processing

The goal of our data processing is to provide accurate data combined into a single database for each analysis. A raw data signal is collected from the detector and stored as a digitized signal by the computer system. This signal is translated into a chromatogram by the chromatography software and integrated to give peaks and areas of those peaks. Using the appropriate response factors, area counts are converted to the calibration parameter. The laboratory technician reviews this information and adjusts integration as necessary. A report is generated by the chromatography system.

For canister measurements, the report is imported into a custom-designed database program that has the user identify up to 12 reference peaks that are then used by a matching algorithm to compare them with a lookup table of all our identified compounds. This program also flags peaks it cannot uniquely identify and the user must then resolve any identification problems. A report can then be printed, and the individual sample data can be merged into a master database of identified compounds for the project. The primary functions of data management are to have data stored in a consistent fashion that is both secure and available. To serve this need we have established a file server system that provides a central storage area for all laboratory and field data. The databases have defined structures that are maintained in one area so that all field names will be consistent, which permits easy merging and comparison of the various databases. Locating all data on a central file server prevents the problems associated with having multiple copies of the same data set, and allows the individuals charged with data processing, security, validation, and QA access to the same databases.

For security, all data are backed up on tape cartridges at regular intervals, depending on the sample load. Redundant backups of critical data are maintained to prevent loss due to failure of the backup media. The network that connects the organic analysis laboratory computers is an isolated local area network (LAN) that cannot be accessed by outside computers. There are no Internet or modem connections to this LAN, thus security cannot be breached from outside. Internal security is maintained by locking of offices and by password-protected accounts on the LAN that record each individual's log-ins and what data were accessed. Other security procedures include a history file in the data collection system for the canister gas chromatographs that records the date, time, and name of the individual making changes to any file. The chromatogram files generated by this system also bind the calibrations with the file, preventing accidental changes in the data by changes in calibrations.

Data from the field, laboratory, and various quality control activities must be unified prior to reporting in a measurement database. Values must be accepted, corrected, flagged as suspect, or removed from this database after they are evaluated

against validation criteria. Precision estimates associated with each value must be calculated from performance test data. The relational database FoxPro for Windows has been selected for this database management task.

Data validation is the most important function of data processing. Sample validation consists of procedures which identify deviations from measurement assumptions and procedures. Three levels of validation are applied which will result in the assignment to each measurement of one of the following ratings: 1) valid; 2) valid but suspect; or 3) invalid.

Level I sample validation takes place in the field or in the laboratory and consists of: 1) flagging samples when significant deviations from measurement assumptions have occurred; 2) verifying computer file entries against data sheets; 3) eliminating values for measurements which are known to be invalid because of instrument malfunctions; and 4) adjustment of measurement values for quantifiable calibration or interference biases. Each gas chromatogram is examined immediately after the run to verify that peak integrations have been performed properly. The peak integration, retention times, and peak identifications assigned by the ChromPerfect software are stored to disk as an ASCII file. The files are then read into a FoxPro data file for additional processing and verification of peak identifications. The peak assignments for the major constituents (typically about a dozen peaks) in the chromatogram are manually verified, and retention times are recalculated for all detectable peaks based upon regression between sample and reference retention times for the manually identified peaks. The adjusted retention times are used to assign peak identifications for all detectable peaks (the reference file currently contains approximately 150 identified compounds). The retention time adjustments and

peak assignments are executed automatically by a FoxPro program. The ChromPerfect and subsequent confirmatory peak identifications are then compared and discrepancies are resolved by the analyst based on peak patterns or confirmatory identification by GC/MS. In the final step, the Level I validated data are appended to the master database. Each sample appears as a record within the database and is identified by a unique sample identification, site, date, and time and as a primary, collocated, blank, spiked, or replicate sample.

When all data for a record have been assembled, the FoxPro programs perform Level II validation checks. Level II validation applies a consistency test based on known physical relationships between variables to the assembled data. Examples include range checks (both single species and ratios of species) and examination of scatterplots and time-series plots for outliers.

2.5.4 Reporting

Data are initially reported in units of volume ratio of carbon. For example the total hydrocarbon results are given in parts-per-thousand of carbon (ppthC). This is just a scale adjustment from parts-per-million of carbon (ppmC) or parts-per-billion of carbon (ppbC). For an individual compound this is equivalent to the parts-per-thousand by volume multiplied by the number of carbon atoms in the compound. This value is most of use because it can be summed over many different compounds easily and the calibration in ppmC allows for the maximum information to be obtained about unknown compounds.

3.0 RESULTS AND DISCUSSION

3.1 Overview of Results

This section describes the results of the analysis of the samples collected for the fuel vapor hydrocarbons. Both total hydrocarbons and the individual species that were determined are presented. The results are also presented as fuel to air ratios. The temperatures and pressures at the time of collection are used for a comparison with the CIT fuel vapor pressure determinations. In addition, Section 3.7 contains a discussion of an inert tracer that was present in the samples.

3.2 Summary of Results as Total Hydrocarbons

This section presents the total hydrocarbon results along with the conditions at the time of sampling. Table 3-1 shows a summary of the data. To identify the samples, the canister number is shown along with the sample flight number and altitude. The flight sequence shows which flight each sample is relative to when fuel was added to the CWT, as discussed in Section 2.3 and Table 2-1. The total hydrocarbons measured in the canister are reported in units of ppthC or parts-per-thousand of carbon. This is a standard unit used in atmospheric chemistry to quantitate the amount of hydrocarbons in a given air sample and is described in Section 2.5.4. Also shown in Table 3-1 is the temperature of thermocouple number 6170274, the nearest to the sample collection point, presented in both Fahrenheit and Celsius degrees. The temperature data are from the NTSB. It is noted that the temperature of the fuel and this may complicate the temperature comparisons. Lastly, the reported approximate altitude at the time of sample collection is presented. Since sample collection takes approximately 15 seconds, and the aircraft is

climbing, the altitude did change slightly during collection, but this subtle change should not affect the sample interpretation, since the samples are quantitated on a volume of hydrocarbon to volume of air basis. Thus, this slight change in altitude and the corresponding change in pressure will not affect the sample, since the number of moles of hydrocarbons with respect to the number of moles of air (the equivalent of the volume to volume ratio) does not change.

Col	lection.					
Canister		Flight	HC	Temp.	Temp.	Altitude
Number	Sample	Sequence ¹	(ppthC)	(°F)	(°C)	(feet)
DRI-M	Flight 1 Taxi	Second	61.2	120	48.9	0
DRI-B	Flight 1 10,000		92.2	114	45.6	10,300
DRI-F	Flight 1 14,000		101.6	116	46.7	14,100
DRI- L	Fight 2 Taxi	Third	71.1	123	50.6	0
DRI- N	Flight 2 10,000		95.3	115	46.1	10,100
DRI- H	Flight 2 14,000		111.9	117	47.2	14,100
DRI-R	Fight 3 Taxi	Fifth	57.3	114	45.6	0
DRI-J	Flight 3 10,000		74.3	109	42.8	10,000
DRI-P	Flight 3 14,000		99.1	108	42.2	14,600

Table 3-1.Summary of Samples Collected and Conditions at Time of Sample
Collection.

¹Flight Sequence is the flight event since fueling of the CWT.

These data show that the concentration of hydrocarbons went up with altitude in all three flights, however, the increase was not linear. Two important factors are driving the concentration in the tank for any given sample: the temperature and the altitude.

The exact nature of the temperature effect can clearly be seen in that at any given altitude, the concentration goes up with temperature. This will be reviewed in Section 3.6 where a comparison is made with the CIT measurements for vapor pressures at various temperatures. To compare the effects of other changes, the increase in concentration over the taxi value was computed and is presented in Table 3-2.

	Percent Increase over Taxi							
Sample	Flight 1	Flight 2	Flight 3					
10,000	51%	34%	30%					
14,000	66%	57%	73%					

Table 3-2.Increases in Concentration at Altitude over Taxi Values.

Comparing the values in Table 3-2 is not straightforward because the temperature changes are not consistent (see Table 3-1), but some conclusions can be drawn. In all cases, the change from sea level to higher altitudes was reasonably consistent across the three samples. As discussed later in this section, the speciation changed considerably during these flights as the fuel aged, yet similar increases are still seen. One interpretation of this is that the heat transfer within the tank consistently results in evaporation during the aircraft climb. This results in maintaining a relatively consistent level of fuel concentration within the tank ullage.

Another approach to looking at the change in fuel vapor concentration is presented in Figure 3-1 which shows the change in fuel vapors with specific volume (m³/kg) of air (reciprocal density). The specific volume is computed from the ideal gas law and the measured temperature and pressure. The specific volume increases with increasing altitude in the atmosphere. The three flights are plotted as separate lines and it can be seen that for all three flights the trend is linear with increasing concentration for increasing air specific volume. The reason this is occurring is that the amount of fuel vapor in absolute terms is staying approximately constant while specific volume in the tank is increasing as the altitude increases. However, the significance of this figure is the generally linear increase in concentration with decreasing pressure which is raising the fuel to air ratio as discussed in Section 3.8.

Figure 3-1. Change in Fuel Vapor Concentration with Change in Specific Volume.

3.3 Summary of Speciation

As part of this effort, each sample was carefully analyzed to determine the exact composition of each sample. The individual sample results are attached as Appendix C and the results of all identified peaks are attached as Appendix D. One measure of how successful this effort was is the measure of the percent of each sample that was identified in the speciation. The percent identified is presented in Table 3-3 for each sample and the average. On average we successfully identified over 80% of the mass of these samples which is generally considered very good.

	Percent
Sample	Identified
Flight 1 Taxi	83.4%
Flight 1 10,000	82.1%
Flight 1 14,000	81.0%
Fight 2 Taxi	82.3%
Flight 2 10,000	81.0%
Flight 2 14,000	80.8%
Fight 3 Taxi	81.2%
Flight 3 10,000	80.0%
Flight 3 14,000	77.3%
Average	81.0%

Table 3-3.Percent of Mass Identified for Each Sample.

The highest concentration species seen in these samples are the normal alkanes, with nonane (C₉) and decane (C₁₀) being the most prominent species. Table 3-4 lists the species with the highest average concentration for all nine samples collected. Of the eighteen species in this table, nine of them are alkanes, with eight straight-chain or brached-chain alkanes and one cyclo-alkane. The other nine compounds are aromatic compounds. Considering the significant differences in the chemical behaviors of these classes of compounds, an understanding of the exact speciation of this fuel vapor is very important.

The nearly complete speciation of these samples allows two important parameters to be calcuated: the average carbon number, and the average carbon to hydrogen ratio. These values are useful for looking at bulk properties of the composition of fuel vapor, and are helpful in combustion modeling of the fuel vapor. The average carbon number for the individual samples are presented in Table 3-5 in the next section and the overall average carbon number is presented in Table 3-7. The carbon number changed by at most less than 9%, trending toward higher carbon numbers as the fuel weathered. The carbon to hydrogen ratio was determined by looking at the detailed speciation (presented

in Appendix C is each compound's carbon to hydrogen ratio) and producing a weighted average which was 1.8. Thus the average compound in this study had the composition $C_{9.58}H_{17.2}$ for a molecular weight of 132.4. This is a very similar composition to that obtained by UNR using a completely independent technique.

The other interesting observation from the speciation of these samples was the prominence of cyclo-alkanes. While only one of these compounds made the top list, there are many more of these than are commonly seen in other hydrocarbon fuels such as gasoline and diesel.

	Average Amount
Species	ppmC
n-decane	5416
n-nonane	4331
1,2,4-trimethylbenzene	3321
n-undecane	2829
isopropylcyclohexane	2579
m/p-xylene	2353
n-octane	2352
1,2,3-trimethylbenzene	1977
1,3,5-trimethylbenzene	1673
C10-parafin	1565
indene	1448
p-diethylbenzene	1423
m-ethyltoluene	1422
2-methyloctane	1386
3-methyloctane	1274
2,5-dimethylheptane	1237
p-ethyltoluene	1169
2-propyltoluene	1148

Table 3-4.Highest Average Concentration Species Identified.

The other one hundred and forty-three compounds that were looked for or identified in these samples are listed in Appendix D. This listing should be of use for future assessments comparing the liquid fuel speciation with the vapor.

3.4 Summary of Carbon Groups

Another way of looking at the compounds found in this study is to group them by approximate carbon number group. This method is the same as that used by the University of Nevada, Reno (UNR) in the data analysis of headspace gas chromatographic results. To accomplish this separation, the retention times are divided such that each normal alkane is the center of that carbon number's grouping. For example, half-way between n-octane and n-nonane is the time that divides the C8 from the C9 group. Since the analyses conducted by DRI contain more separation than those conducted by UNR, we present more groupings. In DRI's groupings, the C3 fractions contains all the compounds lighter than C3 as well. Table 3-5 contains the results of the nine samples collected as part of this project presented as ppmC for each group.

The most striking feature of this Table is the change that occurs throughout the different flights and even within a single flight. The first taxi sample has almost equal amounts of C9 and C10 fractions, but by the last flight the taxi sample shows a clear dominance of the C10 fraction, by almost 50% over C9. Also comparing the same two samples for C12, we see that the concentration has nearly doubled over this time. This observation is consistent with the expected weathering of the fuel whereby the lighter components preferentially evaporate and are purged from the tank by the change in pressure as the plane ascends and then that portion of the tank ullage is replaced by clean air during descent. The lighter components preferentially evaporate because they have higher vapor pressures than the heavier components. It should be noted that while some significant changes in the speciation did occur, the weathering did not change the total mass of fuel vapor present in the CWT.

	Flight 1	Flight 1	Flight 1	Flight 2	Flight 2	Flight 2	Flight 3	Flight 3	Flight 3
Carbon Group	Taxi	10,000'	14,000'	Taxi	10,000'	14,000'	Taxi	10,000'	14,000'
Total C3	15	15	18	18	18	19	9	9	9
Total C4	51	58	61	61	42	48	18	18	12
Total C5	198	252	211	325	167	150	92	72	73
Total C6	584	621	554	525	339	364	142	118	118
Total C7	4213	4588	4318	3229	3109	3567	1413	1262	1354
Total C8	11830	13886	13382	11177	11553	12954	6549	6651	7454
Total C9	18275	24835	25135	21042	24475	27905	15914	17639	20858
Total C10	18573	31647	35472	24404	35043	41391	22134	29615	38360
Total C11	6153	13700	18269	8762	17019	21142	9225	15632	24629
Total C12	861	2358	4108	1203	3248	4354	1516	3201	6088
Ave. Carbon	9.17	9.43	9.59	9.35	9.62	9.67	9.61	9.82	9.96

Table 3-5.Summary of Carbon Groups Totals as ppmC.

Also presented in Table 3-5 is the average carbon number for the composition present in each sample, determined by weighted averaging of the detailed speciation. This value increases with weathering of the fuel and with altitude. The shift due to weathering has already been discussed and is an effect of the preferential evaporation of the lighter components resulting in higher average carbon numbers. The increase with altitude within a given flight may be due in part to the decreasing atmospheric pressure which allows heavier compounds to evaporate.

Another way of looking at the carbon group totals is presented in Table 3-6. Table 3-6 presents the data as the percent each group contributes to the total. In this view it is clear which of the fractions dominates any given sample. It can also be seen how much the fractions change as the fuel weathers. For example, on average, the fractions C9 and below decrease, while those C10 and above increase.

	Flight 1	Flight 1	Flight 1	Flight 2	Flight 2	Flight 2	Flight 3	Flight 3	Flight 3
Carbon Group	Taxi	10,000'	14,000'	Taxi	10,000'	14,000'	Taxi	10,000'	14,000'
Total C3	0.02%	0.02%	0.02%	0.03%	0.02%	0.02%	0.02%	0.01%	0.01%
Total C4	0.08%	0.06%	0.06%	0.09%	0.04%	0.04%	0.03%	0.02%	0.01%
Total C5	0.33%	0.27%	0.21%	0.46%	0.18%	0.13%	0.16%	0.10%	0.07%
Total C6	0.96%	0.68%	0.55%	0.74%	0.36%	0.33%	0.25%	0.16%	0.12%
Total C7	6.94%	4.99%	4.25%	4.56%	3.27%	3.19%	2.48%	1.70%	1.37%
Total C8	19.47%	15.10%	13.18%	15.80%	12.16%	11.58%	11.49%	8.96%	7.53%
Total C9	30.08%	27.01%	24.76%	29.74%	25.76%	24.94%	27.91%	23.77%	21.08%
Total C10	30.57%	34.42%	34.94%	34.50%	36.89%	36.99%	38.82%	39.91%	38.77%
Total C11	10.13%	14.90%	17.99%	12.39%	17.92%	18.89%	16.18%	21.06%	24.89%
Total C12	1.42%	2.56%	4.05%	1.70%	3.42%	3.89%	2.66%	4.31%	6.15%

Table 3-6.Summary of Carbon Groups Totals as Percent of Each Sample.

Comparing the samples within one flight, the same kind of change can be see as from flight-to-flight. That is, from taxi to 14,000' the lower weight groups decrease while the higher weight groups increase. This is displayed graphically in Figure 3-2. The trend is toward similar results at each elevation with increases along with altitude.

Figure 3-2. Comparison of Total Hydrocarbons at Each Elevation.

Comparing Figure 3-2 with the results of the group speciation, we see a trend that from Flight 1 to Flight 3 at any given altitude, the total is similar, yet the speciation is dramatically different. The loss of the light species is made up for with a corresponding
increase in mass by the heavier species such that the total stays remarkably constant. Since the energy released in combustion will be proportional to the mass available, this indicates that the weathering will not reduce the energy available for an explosion, all other things being equal.

As discussed previously, another important value to determine is the average carbon number of the observed species. Table 3-7 shows that by using the carbon groups and weighting the average fraction with the number of carbons and summing over the range, we obtain an overall average carbon number of 9.58 for all samples. Applying the same methodology to each individual flight, we obtain values of 9.40 for flight 1, 9.54 for flight 2, and 9.80 for flight 3. This value will be important for comparing the ppmC values to the partial pressure values as in Section 3.6.

Carbon Group	Average Fraction	Wt	Wt Ave
Total C3	0.00017	3	0.0005
Total C4	0.00050	4	0.0020
Total C5	0.00212	5	0.0106
Total C6	0.00459	6	0.0276
Total C7	0.03639	7	0.2547
Total C8	0.12808	8	1.0247
Total C9	0.26117	9	2.3505
Total C10	0.36200	10	3.6200
Total C11	0.17150	11	1.8865
Total C12	0.03352	12	0.4022
		Net:	9.58

Table 3-7. Average Fraction of Each Carbon Group and Mass Mean Carbon Value.

The carbon grouping provides a clear way to compare these data with the headspace gas chromatography results prepared by UNR. It also gives a way to compare results both across test flights and within a given fight. The average number or carbons for these samples is determined to be 9.58 which is important for assessing the total when the values are expressed as ppmC.

3.5 Changes Seen in Profiles

Another approach to looking at the carbon groups is to compare the light and heavy fractions for each flight. Figures 3-3 through 3-5 show the changes in fuel vapors from taxi, 10,000' and 14,000' for the C3 to C6 fraction. Figures 3-6 to 3-8 show the same sequence for C7 to C12. Each figure depicts the three fights next to each other so the change as the fuel weathers is clear.

For the low weight fractions (Figures 3-3 to 3-5) a clear pattern emerges with each successive flight showing decreases over the previous flight. For the heavier fraction (Figures 3-6 to 3-8) the pattern changes with the C7 to C9 fractions showing decreases and the C10 to C12 showing increases in fraction.

Another important comparison is presented in Figures 3-9 and 3-10 which show the concentration of fuel vapors for the three flights at the 14,000' level. Figure 3-9 should be compared to Figure 3-5 and Figure 3-10 should be compared to Figure 3-8. The concentrations follow the percents for the most part, a notable exception is the C10 fraction which looks different with flight 2 having the highest concentration of this group, yet flight 3 has the highest fraction of the mass in C10.

3-11

Figure 3-3. Comparison of C3 to C6 Fractions at Taxi.

Figure 3-4. Comparison of C3 to C6 Fractions at 10,000'.

Figure 3-5. Comparison of C3 to C6 Fractions at 14,000'.

Figure 3-6. Comparison of C7 to C12 Fractions at Taxi.

Figure 3-7. Comparison of C7 to C12 Fractions at 10,000'.

Figure 3-8. Comparison of C7 to C12 Fractions at 14,000'.

Figure 3-9. Comparison of C3 to C6 Concentrations at 14,000'.

Figure 3-10. Comparison of C7 to C12 Concentrations at 14,000'.

3.6 Comparison with California Institute of Technology Vapor Pressure Results

As previously shown (see Table 3-7), the speciation of the hydrocarbon in the samples concluded that the average species has approximately 10 carbon atoms. Using this as an approximation for the obviously more complex composition, we can estimate the partial pressure of the hydrocarbon vapors in the fuel tank, taking some standard values for the pressures at these altitudes. Table 3-8 presents the results of the calculations to determine the partial pressure of the fuel vapors in the CWT for each sample collected.

	HC	Temp.	Press.	Fuel Pres.
Sample	ppthC	(°C)	(mbar)	(mbar)
Flight 1 Taxi	61.2	48.9	1000	6.12
Flight 1 10,000	92.2	45.6	697	6.43
Flight 1 14,000	101.6	46.7	585	5.94
Fight 2 Taxi	71.1	50.6	1000	7.11
Flight 2 10,000	95.3	46.1	697	6.64
Flight 2 14,000	111.9	47.2	585	6.55
Fight 3 Taxi	57.3	45.6	1000	5.73
Flight 3 10,000	74.3	42.8	697	5.18
Flight 3 14,000	99.1	42.2	585	5.80

Table 3-8.Determination of Partial Pressure of Hydrocarbon Vapors in the CWT.

The California Institute of Technology (CIT) team has also determined the pressure of jet fuels over the temperatures that were seen in the flight tests using a fuel loading of 3 kg/m³ in the tank. CIT provided a comparison between the DRI flight sample partial pressures and their model calculations. Figure 3-11 shows the result of this comparison. It is clear that the determined vapor pressure and the observed concentrations agree very well, considering the inherent difficulty of making these measurements.

Figure 3-11. Comparison of DRI Flight Test Samples with CIT Vapor Pressure Measurements.

These results suggest that the partial pressure of the fuel vapors can be fairly accurately determined by knowing the temperature in the tank and the nominal fuel loading.

3.7 Results of Freon Component Analysis

One of the unexpected results of this investigation of the contents of the CWT samples was the finding of a freon component in the samples. This was a result of using the dual-channel gas chromatograph described in Section 2 which had both FID and ECD detectors. When conducting standard ambient air sample analyses, the ECD channel is used for the detection of halogenated hydrocarbon species such as freons and other industrial chemicals. In this case, the channel was left on for two reasons: it responds to oxygen and thus provides a confirmation of the operation of the sample inlet system, and it would allow detection of any other components the FID might miss.

The signal from this detector showed the oxygen peak and essentially only one other peak. This peak eluted near Freon 11 (trichlorofluoromethane), however, close investigation of the chromatograms showed that it was not Freon 11, but some unknown component. Mass specrometry of a few of these samples resulted in a tentative identification of the compound as 1,1-dichloro-1-fluoroethane, a freon-like substance that is of the newer class of freon replacements known as HCFC's or hydrochlorofluorocarbons. For simplicity, this compound will be referred to simply as "freon" in the rest of this section. The identification of this compound is called tentative because no authentic standard was available to confirm the identity; however, the mass spectral fragmentation of the peak is consistent with this structure as is the response on the ECD detector. Discussion of this result with NTSB personnel resulted in the conclusion that this compound came from the spray cans that were used to cool the thermocouples and thus confirm the identity of each thermocouple on the data collection system. The use of this agent proved to be a useful adjunct to this analysis.

The component that was detected is a gas at ambient conditions, unlike the fuel which is a liquid, thus its behavior will be slightly yet importantly different. Since no authentic standard was available for this compound, the results presented in Table 3-9 are relative (volume/volume) concentrations only, based upon the response of the ECD. Thus the values could be considered equivalent to ppbV, only they are not precisely calibrated. Also shown in Table 3-9 is the average, standard deviation and relative standard deviation, expressed as a percent.

3-18

Sample	Taxi	10,000'	14,000'	Ave	Std Dev	RSD
Flight 1	196	216	205	206	10	4.8%
Flight 2	29.1	31.0	30.3	30.1	1.0	3.2%
Flight 3	1.85	1.89	1.82	1.85	0.04	1.9%

Table 3-9.Results of Freon Component Analysis.Units are relative concentration.

The important conclusion from these data are that the concentration, on a volume (or moles) of freon to moles of air basis did not change by more than approximately 5% (worst case) while the altitude went from sea level to 14,000'. We do know that during this time the absolute pressure inside the tank is decreasing considerably, and as a result, the absolute mass of freon in the tank goes down, but its concentration on a molar basis does not change. This is reasonable, considering that we are neither adding more freon or more air, thus the volume/volume ratio should remain constant. At the end of flight 1, as the plane descends, the absolute pressure inside the tank increases and "fresh" outside air is brought into the tank, thus diluting the freon. This is seen at the start of Flight 2 where the concentration is markedly reduced. Again during this flight the concentration stays constant and then is again decreased at the beginning of Flight 3. Between the second and third vapor sample flights was a flight that included a climb to 35,000', which would have purged the tank as well further reducing the concentration.

The flight operations that took place, including the altitudes that were attained during each flight are detailed in Section 2.3, and specifically in Table 2-1. To explain the loss of the freon component from the tank, we applied two sets of calculations using the data in Table 2-1. The first calculation assumes that only the change in pressure resulting from the altitude changes affected the freon concentration. A second analysis included the potential dilution due to the introduction of cold outside air into the

3-19

relatively warm CWT during descent. These calculations assumed that the pressure at 35,000' is 230 mbar, the pressure at 19,000' is 470 mbar, and the temperatures were 318 K in the tank, 217 K at 35,000' and 250 K at 19,000'. The results of these calculations are presented in Figure 3-12 which shows for the second and third flights, the observed values along with those estimated from the first flight's concentrations taking only the pressure differences into account and for the calculations including the effect of temperature. It is clear from Figure 3-12 that the changes seen in the freon concentration can be explained by this model of dilution of the tank components due to changes in pressure and temperature. It should be noted that the time spent at altitude is not an variable in this calculation since the time spent at a give altitude should not affect the eventual dilution effect, only the maximum altitude attained.

Figure 3-12. Comparison of Observed Freon Concentrations with Calculated Values.

The other conclusion for this study is that the changes seen in the hydrocarbon concentration at various altitudes are real changes, due to the changing atmospheric pressure at higher altitudes along with effects of temperature, and are not a dilution effect caused by the venting of the tank, nor any imhomogeneity in the tank concentration because those should have impacted the concentration of the freon component as well. Thus the tank was well mixed and the dilution that did occur can be simply explained. The presence of this non-reactive gas-phase component was a fortuitous event that helped in the interpretation of these results.

3.8 Results as Fuel to Air Mole and Mass Ratios

The results of the hydrocarbon analyses presented in this section were recalculated as fuel to air ratios. These results are presented in Table 3-10 as both fuel to air mole ratio and fuel to air mass ratios. These ratios are important in assessing the combustible potential of these mixtures. From work conducted at CIT, we know that the lower limit of flammability is a fuel to air mass ratio of approximately 0.03. Thus for these flight tests the taxi samples are very near the lower flammability limit while those at either 10,000' or 14,000' are clearly within the flammability range. The highest single value observed in this study was the 14,000' sample from flight 2, the TWA 800 simulation flight.

The change in fuel to air mass ratio with changing altitude is presented in Figure 3-13. The vertical line in this figure is approximately the lower flammability limit of the fuel. This figure clearly shows the increased flammability danger for the higher altitude samples over those at sea level. It is also important to note that the speciation changes

3-21

discussed above with regard to weathering of the fuel did not reduce the fuel to air mass ratio and thus did not reduce the explosive risk. Considering the time since the fuel was loaded, we see that over 60 hours and four flight had occurred between when the fuel was added and when the last vapor sample was taken, and there is still sufficient volatility in the fuel to produce flammable fuel to air ratios.

	Concentration	Fuel to Air	Fuel to Air
Sample	ppthC	Mole Ratio	Mass Ratio
Flight 1 taxi	61.2	0.006	0.030
Flight 1 10,000	92.2	0.010	0.045
Flight 1 14,000	101.6	0.011	0.049
Flight 2 taxi	71.1	0.007	0.034
Flight 2 10,000	95.3	0.010	0.046
Fligth 2 14,000	111.9	0.012	0.054
Fight 3 taxi	57.3	0.006	0.028
Flight 3 10,000	74.3	0.008	0.036
Flight 3 14,000	99.1	0.010	0.048

Table 3-10. Fuel to Air Mole and Mass Ratios for CWT Air Samples.

Figure 3-13. Fuel to air mass ratio vs. Altitude for CWT samples. The vertical line represents the approximate lower flammability limit.

3.9 Summary of Results

The results of the analysis of the samples collected in the CWT of the test flight show that the samples collected are representative of the tank and that the samples within a sampling period are consistent, demonstrated by the freon component that was detected in the tank. This component also showed that the tank was well mixed and that the loss of the freon, and therefore the venting of the tank, could be explained by the flight patterns. The total values were converted to partial pressures and these compared well with the vapor pressure determinations made by CIT. The speciation showed a clear change with lighter species decreasing in fraction while the heavier species became more prominent as the fuel aged during flight tests. However, the change in speciation did not result in a change in the total fuel vapors found, thus the weathered fuel did not represent a lower risk than the original fuel. The concentration values were converted to fuel to air ratios and showed that while the taxi samples were near or below the flammability limit, the samples at 10,000' and 14,000' were clearly in the flammable range.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Several conclusions and recommendations emerge from this work. With respect to the field sampling, we find that it is possible to collect representative samples from inside the CWT of an operating 747-100 aircraft using slight modifications of standard air sampling practices. Also, with some modifications, similar methods to those used for the analysis of ambient air and source exhaust samples can be used to analyze these samples. Given the dominance of the C9 to C10 factions of these samples, extra care must be taken during the analysis phase to ensure adequate time has elapsed for equilibration within the sample canister.

The results of the gas chromatographic speciation showed a fairly strong dominance of alkane species with aromatic species also high. There were significant amounts of cyclo-alkanes, something not commonly seen in other hydrocarbon profiles such as gasoline or diesel vapor. The speciation showed a clear change with lighter species decreasing in fraction while the heavier species became more prominent as the fuel aged during flight tests. The measured species were divided into carbon groups which provide a convenient way of looking at the weathering of the fuel. The same change was seen with the groups toward a predominance of the higher molecular weight compounds and a loss of the lower molecular weight compounds following each test flight. These changes can be explained by the evaporation of the lighter components and their venting from the tank during the climb phase of the flights. As the plane descends, the vapor phase in the tank is then replaced with vapor-free air from outside, thus eliminating those components. One explanation of this change is that the heat transfer within the tank consistently results in evaporation during the aircraft climb. This results

4-1

in maintaining a relatively consistent level of fuel concentration within the tank ullage, even following weathering. Thus it does not appear that weathered fuel represents a lower risk than fresh fuel.

A freon-like component was left in the tank from the testing of the thermocouples and this served as a tracer-of-opportunity that clearly shows how well the sampling procedure collected representative samples. It also showed the well-mixed nature of the tank during the flight test program, and the loss of this compound was explained by changes in temperature and pressure during the flights.

The fuel to air mass ratios for the fuel vapors measured in this study fall within the flammable range for all samples at the 10,000' and 14,000' levels. The taxi samples are near the lower flammability limit. The single highest fuel to air ratio found was for flight 2, the TWA 800 simulation flight, at 14,000'. These results show that even after over 60 hours of operations (from time of fueling), the fuel can easily reach the flammable range at the altitude which the accident aircraft exploded.

The observations were compared to the vapor pressure model of CIT and show a very good comparison when the hydrocarbon results are expressed as a partial pressure.

While these studies are the first to investigate samples taken directly from the CWT of an in use 747 aircraft and analyze them for hydrocarbon vapors, they represent only a very small set of data to begin to draw conclusions about jet fuel behavior. Still, these results are very promising in how well they relate to other research results such as those from CIT's vapor pressure experiments, and in the ability of these results to clearly show some of the mixing and venting behavior of the CWT.

4-2

At the same time, several recommendations emerge:

- Protocol for this type of study should include collection of liquid fuel samples and speciation of those samples to relate fuel vapors to the liquid composition.
- Physical vapor pressure measurements at temperatures bracketing those seen in the tank should be conducted.
- If these experiments are repeated, an inert tracer gas should be used to confirm the sample collection from and mixing and venting of the CWT.

BLANK PAGE

APPENDIX A

Field Sampling Sheets

NTSB Aircraft Tank Sampling New York, JFK Airport Canister Sampling Log

Date: 7-14-017

Test Conditions: TEST # 001-02 (150 FLIGHT

I. Pre-Sampling:

1. Install canisters, making sure all connections are tight.

1, 11	istuii cains	iers, making surv	dif connections u	IO LIGHT.
Manifold	Canister	Toggle Valve	Canister Valve	Filmut
Position	D	Shut?	Open?	Conster Tay
19	+		V	Val
715	M			
\$ 28	Z		V	
\$ 25	В			
\$ 3P	A	\checkmark		
6 35	F			

II. Sampling:

Manifold	Purge or	Time	Sample leastion (alt /mmss /mote
Position	Sample	Time	Sample location/alt./press./note
pΡ		12:06	CUT TAXING
215		12:06	CWT & TAXIING
328	V	12:18	aut 19800
4 25		12:18	CWT 10300
5 3P		12:24	CUT/390/
635	V	12:24	CWT 14100 1

III. Post-Sampling

Close Canister	Cap
Valve	Canister
~	
	V
V	V
L.	
	i v
	Close Canister Valve

7/15/97 por call for Conram

NTSB Aircraft Tank Sampling New York, JFK Airport Canister Sampling Log

Date:

Test Conditions: $\overline{\text{TEST}^{\#}} \infty [-02 (2^{ND} FLIGH)]$

I. Pre-Sampling:

1. Install canisters, making sure all connections are tight.

Manifold	Canister	Toggle Valve	Canister Valve	CANPTERS	
Position	ID	Shut?	Open?	LABFLEP	
1 P	G	5			
2)5	Ľ	V			
3 2 P	X	V	1	L	
4 25	N	~			
5 3P	K	V		-	
6 35	H	V			

П. Sampling:

Manifold Position	Purge or Sample	Time	Sample location/alt./press./note
1 P	P	9:57	CUT TAXIING
2 15	55	19:57	CLUT / TAXIING
3 Z P	PL	20:27	200 CWT/9800
4 2.5	SV	20:27	CWT /10/00'
5 3P	PV	20:33	CWT 193,800
6 35	5 /	20:33	CWT / 14, 100

III. Post-Sampling

Manifold	Close Canister	Cap
Position	Valve	Canister
1 IP		5
2 15		
3 2P		\mathcal{V}
4 25		
5 3P		
6 35	<i>V</i> .	. /

NTSB Aircraft Tank Sampling New York, JFK Airport Canister Sampling Log

Date: 7-16-93

(2 ND FLEAT OF DAY) Test Conditions: TEST 001-04

I. Pre-Sampling:

1. Install canisters, making sure all connections are tight.

Manifold	Canister	Toggle Valve	Canister Valve
Position	ID	Shut?	Open?
1 1 P	W		\mathcal{V}
2 15	R		
3 2P	E		~
4 25	J		1
5 3 P	S	V	
6 35	Ρ		

II. Sampling:

Manifold Position	Purge or Sample	Time	Sample location/alt./press./note
1 P	Ρ	19:33	CWT TAXING
2 15	Ş	19:33	CWT / TAXIING
3 21	P	20:06	CUT 19700 "
4 25	Ś	20:06	aut 1.10/00'
5 3 P	P	20:12	CWT / H. 100'
6 35	3	20:12	CWT 114,600'

III. Post-Sampling

Manifold	Close Canister	Cap
Position	Valve	Canister
1 P		
2 IS		V
3 2P		V
4 25		F
5 3P		
6 35		

APPENDIX B

Chain-of-Custody Records for Canister Samples

Canister Number:	DRI-T		
Cleaning Date Cleaned	7/3/97	Cleaned by	<u>r</u> K
Lot Certification 407595 Date Certified	7/5/97	Certified by	_MK
Shipping: DRI to Field Date Shipped	7/7/97	Ship ped by	une /5J
Date Received	7/8/97	Received by	Jes in No
Sampling Date Sampled	7/14/57	Sampled by	Bib Limm
Shipping: Field to DRI Date Shipped	7/15/97	Shipped by	Been NRA
Date Received	7/16/97	Received by	JEI
Analysis Date Analyzed	7/18/77	Analyzed by	<u>Ju</u>

NOTES:

-

Canister Number:	DRI-M		
Cleaning Date Cleaned	7/3/97	Cleaned by	TK
Lot Certification 4 + 595 Date Certified	7/5/97_	Certified by	_HK
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	MK /JJ
Date Received	7/8/97	Received by	R nNY
Sampling Date Sampled	7/14/97	Sampled by	Ret Learn
Shipping: Field to DRI Date Shipped	7/1-/97	Shipped by	Bray I.VBA
Date Received	7/16/17	Received by	(PS
Analysis Date Analyzed	7/18/71	Analyzed by	

Tot #001-02 NOTES: 15

.

_

~___

•

Canister Number:	DRI-Z		
Cleaning Date Cleaned	7/3/97	Cleaned by	<u>IK</u>
Lot Certification 0+ 545 Date Certified	715/97	Certified by	<u> </u>
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	me/53
Date Received	7/8/97	Received by	TES IN NV
Sampling Date Sampled	7/14/97	Sampled by	Reb Lonnem
Shipping: Field to DRI Date Shipped	7/15/97	Shipped by	Boen NISA
Date Received	7/16/97	Received by	<u>A</u> S
Analysis Date Analyzed	7/18/97	Analyzed by	G

NOTES: Test # 001-02 2P

.

- - -

•

Canister Nu	mber:	DRI-B		
Cleaning Date	Cleaned	7/3/97	Cleaned by	<u>_rk</u>
Lot Certific: Date	ation _{Le} , 595 Certified	7/5/97	Certified by	HK
Shipping: I Date	ORI to Field Shipped	7/7/97	Shipped by	MK/TS
Date	Received	7/8/97	Received by	DS IN NY
Sampling Date	Sampled	7/14/47	Sampled by	Bh Connoun
Shipping: F Date	Field to DRI Shipped	7/15/97	Shipped by	Boein / NBB
Date	Received	7/16/97	Received by	<u>JU</u>
Analysis Date	e Analyzed	7/13/47	Analyzed by	Ţ

.

NOTES: TCF+ #001-02 25

. .

Canister Number:	DRI-A		
Cleaning Date Cleaned	7/3/97	Cleaned by	MK
Lot Certification of 595 Date Certified	7/5/97	Certified by	<u>IK</u>
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	M4/55
Date Received	7/5/97	Received by	JST. MY
Sampling Date Sampled	7/14/97	Sampled by	Beb Luman
Shipping: Field to DRI Date Shipped	7/15/47	Shipped by	Burny /NTSE
Date Received	7/16/97	Received by	<u>tu</u>
Analysis Date Analyzed	7/20/97	Analyzed by	<u> </u>

NOTES:

· · · ·

Canister Number:	DRI-F		
Cleaning Date Cleaned	7/3/97	Cleaned by	<u> </u>
Lot Certification Jot 595 Date Certified	7/5/97	Certified by	<u>rk</u>
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	m /sci
Date Received	7/8/97	Received by	TO IN NY
Sampling Date Sampled	7/14/97	Sampled by	Bob Linnam
Shipping: Field to DRI Date Shipped	7/15/97	Shipped by	Bacing / MTSB
Date Received	7/16/97	Received by	II
Analysis Date Analyzed	7/10/57	Analyzed by	¥

•

NOTES:

. ____

Test #001-02 35

_

Canister Number:	PRI-D		
Cleaning Date Cleaned	7/4/97	Cleaned by	_ <u>₹.S</u>
Lot Certification _{Fet} 596 Date Certified	7/5/97	Certified by	_JS
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	MUL / 55
Date Received	7/8/97	Received by	OB in NY
Sampling Date Sampled	7/10/97	Sampled by	Je
Shipping: Field to DRI Date Shipped	Feturnel in luss	esc JCJ Shipped by	
Date Received	NA	Received by	NIS
Analysis Date Analyzed	7/1497	Analyzed by	Y
NOTES. Ollsed to	pull Vacuum	on syste	$m \neq 0$

OUsed to pull Vacuum on System to test for leaks 7/10/77 - new faul. O(cons Vented to Atmesphini pressure to show Vented to Atmesphini pressure to show fine of sampling needed to equilibrates - 155cm

.

• ••

-

Canister Number:	DRI-G		
Cleaning Date Cleaned	6/30/97	Cleaned by	<u>_K</u>
Lot Certification 10+592 Date Certified	7/2/97	Certified by	<u>K</u>
Shipping: DRI to Field Date Shipped	7/7/97	Ship ped by	_me /50
Date Received	7/8/97	Received by	B. n. NavyEn
Sampling Date Sampled	7/15/97 2M Fit	Sampled by	Larrenn
Shipping: Field to DRI Date Shipped	7/18/97	Shipped by	Berry
Date Received	7/19/9	Received by	JG
Analysis Date Analyzed	7/12/97	Analyzed by	TS

.

NOTES: Test#001-02 (2ml fl+) IP

di

•

Canister Number:	DRI-L		
Cleaning Date Cleaned	6/30/97	Cleaned by	<u>K</u>
Lot Certification Lot 372 Date Certified	7/2/97	Certified by	MK
Shipping: DRI to Field Date Shipped	7/7/97	Ship ped by	MASES
Date Received	7/8/97	Received by	Jo n New Kul
Sampling Date Sampled	7/15/97 2004	Sampl ed by	Bb Laman
Shipping: Field to DRI Date Shipped	7/18/97	Shipped by	Benzon
Date Received	7/19/97	Received by	RJ
Analysis Date Analyzed	7/22/97	Analyzed by	JG

.

. ..

NOTES: Test #001-02 2nd flight 15

· . ·

67

Canister Number:	DRI-X		
Cleaning Date Cleaned	6/30/97	Cleaned by	MK
Lot Certification Lot 592 Date Certified	7/2/97	Certified by	MK
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	mk/JCI
Date Received	7/8/97	Received by	RSINNY
Sampling Date Sampled	7/15797 204	Sampled by	Lunnemar
Shipping: Field to DRI Date Shipped	7/18/97	Shipped by	Beyzon
Date Received	7/19/47	Received by	Tu
Analysis Date Analyzed	7/11/97	Analyzed by	<u>V</u>

NOTES: Jest # 001-02 (2 ml f1+) ZP

r

- --

Canister Number:	DRI-N		
Cleaning Date Cleaned	6/30/97	Cleaned by	<u> MK</u>
Lot Certification Lof 592 Date Certified	7/2/97	Certified by	K
Shipping: DRI to Field Date Shipped	7/7/91	Shipped by	MK/JU
Date Received	7/8/97	Received by	PS IN NY
Sampling Date Sampled	7/15/97 201	Sampled by	Lonneum
Shipping: Field to DRI Date Shipped	7/18/97	Shi pped by	Beylen
Date Received	7/19/97	Received by	<u>P</u> J
Analysis Date Analyzed	7/21/97	Analyzed by	<u>JU</u>

NOTES: Tot #001-02 (2~# f14) 25

e

Canister Number:	DRI-K		
Cleaning Date Cleaned	6130/97	Cleaned by	<u>HK</u>
Lot Certification + 64 592 Date Certified	7/2/97	Certified by	<u>K</u>
Shipping: DRI to Field Date Shipped	7/7/97	Ship ped by	MK/RS
Date Received	7/8/97	Received by	DS M NY
Sampling Date Sampled	7/15/97	Sampled by	(annem
Shipping: Field to DRI Date Shipped	7/18/97	Ship ped by	Beyzan
Date Received	7/19/47	Received by	15
Analysis Date Analyzed	7/1/97	Analyzed by	

NOTES:

- --

Test #001-02 (2nd f4)

3P

J.

.

Canister Number:	DRI-H		
Cleaning Date Cleaned	6/30/97	Cleaned by	<u>MX</u>
Lot Certification $L_0 + 542$ Date Certified	7/2/97	Certified by	<u> </u>
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	Mic /Jy
Date Received	7/8/94	Received by	Tes , WNY
Sampling Date Sampled	7/15/97	Sampled by	Conneun
Shipping: Field to DRI Date Shipped	7/18/97	Shi pped by	Benzon
Date Received	7/19/97	Received by	<u> </u>
Analysis Date Analyzed	7/21/97	Analyzed by	TU

NOTES:

•

35

a.

. . .

Tot #001-02 (2ml fl)

.
Canister Number:	DRI-C		
Cleaning Date Cleaned	7/4/97	Cleaned by	_ 7 S
Lot Certification Let 596 Date Certified	7/5/97	Certified by	_7S
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	JES/MIL
Date Received	7/8/97	Received by	Jes ih NY
Sampling Date Sampled		Sampled by	
Shipping: Field to DRI Date Shipped	7/18/97	Shipped by	Benzen
Date Received	7/19/97	Received by	
Analysis Date Analyzed	7/20/97	Analyzed by	E

NOTES: (an Not used, Shipped & returned. Filled = Zero Air 7/19/97 as a first Bluer

.

. .

Canister Number:	DRI-W		
Cleaning Date Cleaned	7/1/97	Cleaned by	<u>_M</u>
Lot Certification in STB Date Certified	7/3/97	Certified by	<u>_^K</u>
Shipping: DRI to Field Date Shipped	<u>++/7/77</u>	Ship ped by	whe / TC
Date Received	7/8/97	Received by	TS is NY
Sampling Date Sampled	7/16/47	Sampled by	Lanen-
Shipping: Field to DRI Date Shipped	7/18/97	Ship ped by	Benzon
Date Received	7/19/97	Received by	<u>P</u>
Analysis Date Analyzed	7/0/97	Analyzed by	<u>_</u>

NOTES: Test #001-04 (2nd fit. of day) 1P

a.

.

. . .

~--

Canister Number:	DRI-R		
Cleaning Date Cleaned	7/1/97	Cleaned by	IK
Lot Certification/4+593 Date Certified	7/3/97	Certified by	_ <u>MK</u>
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	ME/SU
Date Received	7/8/97	Received by	To in N'y
Sampling Date Sampled	7/16/97	Sampled by	(curretture
Shipping: Field to DRI Date Shipped	7/18/47	Shipped by	Benzen
Date Received	7/19/97	Received by	(F)
Analysis Date Analyzed	7/21/97	Analyzed by (25

NOTES: Test #001-04 (2nd fit of day) IS

.

~--

Canist	er Number:	DRI-E		
Cleani	ng Date Cleaned	7/1/97	Cleaned by	<u>IK</u>
Lot Ce	ertification.401553 Date Certified	7/3/97	Certified by	MK
Shippi	ng: DRI to Field Date Shipped	7/7/97	Shipped by	un / 35
	Date Received	7/8/97	Received by	Ps in NY
Sampl	ing Date Sampled	7/16/97	Sampled by	Lanem
Shippi	ng: Field to DRI Date Shipped	7/18/97	Shipped by	Renzey
	Date Received	7/19/97	Received by	<u>B</u>
Analy	sis Date Analyzed	7/11/97	Analyzed by	T <u>y</u>

Canister Number:	DRI-J		
Cleaning Date Cleaned	7/1/91	Cleaned by	MK
Lot Certification 14+593 Date Certified	7/3/97	Certified by	MK
Shipping: DRI to Field Date Shipped	7/1/97	Ship ped by	me to
Date Received	7/8/57	Received by	Ps in NY
Sampling Date Sampled	7/16/97	Sampled by	Lanneum
Shipping: Field to DRI Date Shipped	7/18/97	Ship ped by	Benzon
Date Received	7/19/97	Received by	CH
Analysis Date Analyzed	7/21/71	Analyzed by	T

NOTES: Test #001-04 (2nd flight of day) 25

a)

_

Canister Number:	DRI-S		
Cleaning Date Cleaned	7/1/97	Cleaned by	rK
Lot Certification 201593 Date Certified	7/3/97	Certified by	<u>mx</u>
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	MK JES
Date Received	7/8/97	Received by	Tes in NY
Sampling Date Sampled	7/16/97	Sampled by	Laurenn
Shipping: Field to DRI Date Shipped	7/18/77	Ship ped by	Benzon
Date Received	7/19/47	Received by	52)
Analysis Date Analyzed	7/21/94	Analyzed by	B

NOTES: Test #001-04 (2md flight of day) 3P

> ال م

.

Canister Number:	DRI-P		
Cleaning Date Cleaned	7/1/97	Cleaned by	<u>IK</u>
Lot Certification Lot 543 Date Certified	7/3/97	Certified by	_HK
Shipping: DRI to Field Date Shipped	7/7/97	Shipped by	Mh / JG
Date Received	7/8/97	Received by	Tes in NY
Sampling Date Sampled	7/15/97	Sampled by	Lannem
Shipping: Field to DRI Date Shipped	7/18/97	Shi pped by	Benzen
Date Received	7/19/47	Received by	<u>Po</u>
Analysis Date Analyzed	7/21/97	Analyzed by	<u>ty</u>

NOTES: Tot #601-04 (2nd flight of day) 35

.

•

•

APPENDIX C

Individual Sample Gas Chromatographic Results

3.05 8.38 0.41 0.00 0 0.000 3.78 1.36 0.41 0.00 0.00 0.000 7.05 propane N_PROP 4.83 0.41 3.00 4.00 4.51.12 2.500 13.00 h-butane N_BUTA 2.73 0.41 6.84 4.51.12 2.500 13.00 h-butane TZBUTE 1.98 0.41 0.60 4.51.12 2.001 14.62 c-2-butene C2BUTE 4.63 0.41 1.00 0 0.00 0.000	SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ PPBV		C_N	MW	стон
3.78 1.36 0.41 0.00 0.000 7.05 propane N_PPCP 4.83 0.41 1.81 3 4.41 2.630 10.90 lsobutane N_BUTA 27.35 0.41 6.84 4.58.12 2.500 13.70 12-2-butene C2BUTE 1.98 0.41 0.50 4.58.12 2.500 13.70 12-2-butene C2BUTE 4.63 0.41 1.64 56.11 2.001 15.63 1.07 0.41 0.00 0 0.000 0.000 15.62 2.46 0.41 0.54 5 1.3 0.00 0.000 0.000 16.63 1.07 0.41 0.00 0 0.00 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 0.000 0	3.05			8.38	0.41	0.00	0	0.00	0.000
7.05 propane N_PROP 4.83 0.41 1.6 3 44.10 2.669 10.90 isobutane LBUTA 17.96 0.41 3.00 4 58.12 2.500 13.00 in-butane T2BUTE 1.98 0.41 0.64 4 56.11 2.001 14.62 C2-Dutene C2BUTE 4.63 0.41 1.16 4 56.11 2.001 15.63 1.07 0.41 0.00 0 0.00 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	3.78			1.36	0.41	0.00	0	0.00	0.000
10.90 isobutane I.BUTA 11.96 0.41 3.00 4 58.12 2.500 13.00 n-butane N_BUTA 27.35 0.41 6.84 4 58.12 2.500 13.70 I-2-butene C2BUTE 1.98 0.41 0.50 4 56.11 2.001 15.85 2 2.246 0.41 0.00	7.05	propane	N_PROP	4.83	0.41	1.61	3	44.10	2.669
13.00 n-butane N. BUTA 27.35 0.41 6.84 4 58.12 2500 13.70 I-2-butene T2BUTE 1.98 0.41 0.50 4 56.11 2.001 15.63 1.07 0.41 0.00 0.000 0.000 0.000 15.63 1.07 0.41 0.00 0.000 0.000 0.000 15.82 2.46 0.41 0.54 5 70.13 2.000 16.67 PENTA 82.68 0.41 0.54 5 70.13 2.000 17.75 T2 2.07 0.41 0.00 0.000 0.000 17.91 1.06 0.41 0.00 0.000 0.000 1.000 0.000 0.000 18.28 Pentene PENTE1 36.24 0.41 7.25 70.13 2.000 19.91-pentene PENTE1 36.24 0.41 0.53 70.13 2.000 19.82 Pentene T2PENE 3.65 0.	10.90	isobutane	I_BUTA	11.98	0.41	3.00	4	58.12	2.500
13.70 h-2-butene T2BUTE 198 0.41 0.50 4 56.11 2.001 14.62 h-2-butene C2BUTE 4.63 0.41 0.00 0.000 0.000 15.63 1.07 0.41 0.00 0.000 0.000 0.000 15.82 BEXME 2.66 0.41 0.00 0.000 0.000 16.28 3-methyl-1-butene B1E3ME 2.66 0.41 0.00 0.000 0.000 16.27 PENTA 62.64 0.41 1.253 5 72.15 2.401 17.71 Isopentane IPENTA 62.64 0.41 0.00 0.00 0.000 17.91 Pentene PENTE1 36.24 0.41 0.25 70.13 2.000 18.43 2-methyl-1-butene B1E2M 1.07 0.41 0.00 0.00 0.000 0.000 0.000 1.000 1.00 0.41 0.75 72.15 2.401 19.01-pentene T2PENE 3.65<	13.00	n-butane	N_BUTA	27.35	0.41	6.84	4	58.12	2.500
14.62 c-2-butene C2BUTE 4.63 0.41 1.16 4 56.11 2.001 15.55 1.86 0.41 0.00 0.000 0	13.70	t-2-butene	T2BUTE	1.98	0.41	0.50	4	56.11	2.001
15.35 1.86 0.41 0.00 0.00 0.000 15.63 1.07 0.41 0.00 0 0.00 0.000 15.63 2.46 0.41 0.00 0 0.00 0.000 16.67 2.46 0.41 0.00 0.000 0.000 0.000 16.67 4.11 0.41 0.00 0.000 0.000 0.000 0.000 17.21 isopentane IPENTA 62.64 0.41 12.53 5 72.15 2.401 17.91 1.06 0.41 0.00 0.000 0.000 0.000 0.000 0.000 18.83 r-pentene PENTE1 38.24 0.41 0.00 0.000 0.000 19.91 -pentene TPENE 3.65 0.41 0.73 7.013 2.000 18.43 -pentene TPENE 3.65 0.41 0.53 5 70.13 2.000 19.49 c-2-pentene C2PENE 2.66 0.41 0.53 5 70.13 2.000 19.82 <td>14.62</td> <td>c-2-butene</td> <td>C2BUTE</td> <td>4.63</td> <td>0.41</td> <td>1.16</td> <td>4</td> <td>56.11</td> <td>2.001</td>	14.62	c-2-butene	C2BUTE	4.63	0.41	1.16	4	56.11	2.001
15.63 1.07 0.41 0.00 0 0.00 0.000 15.82 2.46 0.41 0.54 70.13 2.000 16.67 4.11 0.41 0.54 70.13 2.000 17.75 2.07 0.41 0.00 0 0.00 0.00 17.75 2.07 0.41 0.00 0 0.00 0.00 17.91 1.06 0.41 0.00 0 0.00 0.00 17.91 1.06 0.41 0.00 0 0.00 0.00 18.28 2.34 0.41 0.00 0 0.00 0.00 0.00 18.63 pentane N_PENT 45.84 0.41 9.17 5 70.13 2.000 19.09 1-2-pentene C2PENE 3.65 0.41 0.55 70.13 2.000 19.70 2-14 0.31 0.75 77.13 2.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	15.35			1.86	0.41	0.00	0	0.00	0.000
15.82 2.46 0.41 0.00 0.00 0.00 16.82 3-methyl-1-butene B1E3ME 2.68 0.41 0.54 5 70.13 2.000 17.721 isopentane IPENTA 62.64 0.41 0.00 0.000 0.000 17.751 2.071 0.41 0.000 0.000 0.000 0.000 17.91 2.071 0.41 0.00 0.000 0.000 0.000 18.28 2.34 0.41 0.00 0.000 0.000 0.000 18.48 2-methyl-1-butene B1E2M 1.07 0.41 0.21 5 70.13 2.000 18.43 2-methyl-2-butene D2PENT 45.64 0.41 0.75 72.15 2.401 19.01 2-pentene C2PENE 2.66 0.41 0.73 70.13 2.000 19.40 0-2-pentene C2PENE 2.66 0.41 0.00 0.00 0.00 0.00 0.00 0.00	15.63			1.07	0.41	0.00	0	0.00	0.000
16.28 3-methyl-1-butene B1E3ME 2.68 0.41 0.54 5 70.13 2.000 16.67 4.11 0.41 0.25 5 72.15 2.401 17.71 isopentane IPENTA 62.64 0.41 12.53 5 72.15 2.401 17.79 1.06 0.41 0.00 0 0.00 0.000 17.91 1.06 0.41 0.00 0 0.00 0.000 18.28 2.34 0.41 0.25 5 70.13 2.000 18.43 n-pentane N PENT 45.64 0.41 0.21 5 70.13 2.000 18.43 n-pentane N PENT 3.65 0.41 0.53 5 70.13 2.000 19.49 c2-pentene C2PENE 3.66 0.41 0.00 0.000 0.000 20.01 1.93 0.41 0.00 0 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <	15.82			2.46	0.41	0.00	0	0.00	0.000
16.67 4.11 0.41 0.00 0.000 0.000 17.21 isopentane IPENTA 62.64 0.41 12.53 5 72.15 2.401 17.75 2.07 0.41 0.00 0 0.00 0.000 17.91 1.06 0.41 0.00 0 0.00 0.000 18.28 0.41 7.25 5 70.13 2.000 18.28 -pentane PENTE 36.24 0.41 0.00 0.000 0.000 18.28 -pentane N_PENT 45.84 0.41 9.17 5 70.13 2.000 19.90 c2-pentene C2PENE 2.66 0.41 0.53 5 70.13 2.000 19.82 -2-methyl-z-butene B222M 3.29 0.41 0.06 5 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<	16.28	3-methyl-1-butene	B1E3ME	2.68	0.41	0.54	5	70.13	2.000
17.21 isopentane IPENTA 62.64 0.41 12.53 5 72.15 2.401 17.75 2.07 0.41 0.00 0 0.00 0.000 17.99 1-pentene PENTE1 36.24 0.41 7.55 70.13 2.000 18.28 2.34 0.41 7.00 0 0.00 0.000 18.43 2-methyl-1-butene B1E2M 1.07 0.41 0.21 5 70.13 2.000 18.63 n-pentane N_PENT 45.84 0.41 9.17 5 72.15 2.401 19.09 t-2-pentene C2PENE 2.66 0.41 0.53 5 70.13 2.000 19.82 2-methyl-2-butene B2E2M 3.29 0.41 0.06 0 0.00 0.000 20.30 10.00 0.41 0.00 0 0.00 0.000 0.000 20.31 2.41 0.41 0.00 0 0.00 0.000 0.000 20.33 0.41 0.00 0 0.00 0.0	16.67			4.11	0.41	0.00	0	0.00	0.000
17.75 2.07 0.41 0.00 0.000 0.000 17.91 1.06 0.41 0.00 0.000 0.000 17.99 1-pentene PENTE1 36.24 0.41 7.25 5 70.13 2.000 18.28 2.34 0.41 0.00 0 0.00 0.000 0.000 18.43 2-methyl-1-butene B1E2M 1.07 0.41 0.21 5 70.13 2.000 18.63 n-pentane N_PENT 45.84 0.41 9.17 5 70.13 2.000 19.09 t-2-pentene C2PENE 2.66 0.41 0.53 5 70.13 2.000 19.70 2-methyl-2-butene B2E2M 3.29 0.41 0.66 5 70.13 2.000 20.01 1.33 0.41 0.00 0 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <td>17.21</td> <td>isopentane</td> <td>IPENTA</td> <td>62.64</td> <td>0.41</td> <td>12.53</td> <td>5</td> <td>72.15</td> <td>2.401</td>	17.21	isopentane	IPENTA	62.64	0.41	12.53	5	72.15	2.401
17.91 1.06 0.41 0.00 0 0.00 17.99 1-pentene PENTE1 36.24 0.41 7.25 5 70.13 2.000 18.28 2.34 0.41 0.021 5 70.13 2.000 18.43 2-methyl-1-butene B1E2M 1.07 0.41 0.21 5 70.13 2.000 18.63 n-pentane N_PENT 45.84 0.41 9.77 5 72.15 2.401 19.09 t-2-pentene C2PENE 3.66 0.41 0.73 5 70.13 2.000 19.70 2-methyl-2-butene B2E2M 3.29 0.41 0.66 5 70.13 2.000 19.82 3.91 0.41 0.00 0.00 0.00 0.0	17.75			2.07	0.41	0.00	0	0.00	0.000
17.99 1-pentene PENTE1 36.24 0.41 7.25 5 70.13 2.000 18.28 2.34 0.41 0.00 0.000 0.000 18.43 2-methyl-1-butene B122M 1.077 0.41 0.21 5 70.13 2.000 18.63 n-pentane N_PENT 45.84 0.41 9.17 5 72.15 2.401 19.90 t-2-pentene C2PENE 3.66 0.41 0.53 5 70.13 2.000 19.40 c-2-pentene C2PENE 2.66 0.41 0.53 5 70.13 2.000 19.82 3.91 0.41 0.66 5 70.13 2.000 20.01 1.93 0.41 0.00 0.00 0.00 0.000 20.30 1.100 0.41 0.00 0 0.00 0.000 0.000 20.37 1.40 0.41 0.00 0 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0	17.91	, 18 U · · · · · · · · · · · · · · · · · ·		1.06	0.41	0.00	0	0.00	0.000
18.28 2.34 0.41 0.00 0 0.000 18.43 2-methyl-1-butene B1E2M 1.07 0.41 0.21 5 70.13 2.000 18.63 n-pentane N_PENT 45.84 0.41 0.73 5 70.13 2.000 19.09 I-2-pentene T2PENE 3.65 0.41 0.73 5 70.13 2.000 19.70 2-methyl-2-butene B2E2M 3.29 0.41 0.66 5 70.13 2.000 19.82 3.91 0.41 0.00 0 0.00 0.000 20.01 1.93 0.41 0.00 0 0.00 0.000 20.30 1.00 0.41 0.00 0 0.00 0.000 20.57 1.40 0.41 0.40 0.00 0.000 0.000 20.73 3.46 0.41 0.00 0 0.00 0.000 0.000 20.98 3.97 0.41 0.00 0 0.00 0.000 0.000 0.000 0.000 0.000 <t< td=""><td>17.99</td><td>1-pentene</td><td>PENTE1</td><td>36.24</td><td>0.41</td><td>7.25</td><td>5</td><td>70.13</td><td>2.000</td></t<>	17.99	1-pentene	PENTE1	36.24	0.41	7.25	5	70.13	2.000
18.43 2-methyl-1-butene B1E2M 1.07 0.41 0.21 5 70.13 2.000 18.63 n-pentane N_PENT 45.84 0.41 9.17 5 72.15 2.401 19.09 t-2-pentene T2PENE 3.65 0.41 0.73 5 70.13 2.000 19.49 c-2-pentene C2PENE 2.66 0.41 0.65 5 70.13 2.000 19.70 2-methyl-2-butene B2E2M 3.29 0.41 0.06 5 70.13 2.000 20.01 1.93 0.41 0.00 0 0.00 0.000 20.30 1.00 0.41 0.00 0 0.00 0.000 0.000 20.37 1.40 0.41 0.40 0 0 0.00 0.000 0.000 20.37 1.92 0.41 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 </td <td>18.28</td> <td> -</td> <td></td> <td>2.34</td> <td>0.41</td> <td>0.00</td> <td>0</td> <td>0.00</td> <td>0.000</td>	18.28	-		2.34	0.41	0.00	0	0.00	0.000
18.63 n-pentane N_PENT 45.84 0.41 9.17 5 72.15 2.401 19.09 12-pentene T2PENE 3.65 0.41 0.73 5 70.13 2.000 19.49 c2-pentene C2PENE 2.66 0.41 0.65 70.13 2.000 19.70 2-methyl-2-butene B2E2M 3.29 0.41 0.66 5 70.13 2.000 20.01 1.93 0.41 0.00 0 0.00 0.000 20.30 1.03 0.41 0.00 0 0.00 0.000 20.31 1.00 0.41 0.00 0 0.00 0.000 20.30 1.00 0.41 0.00 0 0.00 0.000 20.32 2.2-dimethylbutane BU22DM 8.61 0.41 0.00 0 0.00 0.000 20.37 3.37 0.41 0.00 0 0.00 0.000 0.000 0.000 0.000	18.43	2-methyl-1-butene	B1E2M	1.07	0.41	0.21	5	70.13	2.000
19.09 t-2-pentene T2PENE 3.65 0.41 0.73 5 70.13 2.000 19.49 c-2-pentene C2PENE 2.66 0.41 0.53 5 70.13 2.000 19.70 2-methyl-2-butene B2E2M 3.29 0.41 0.66 5 70.13 2.000 19.82 3.91 0.41 0.00 0 0.00 0.000 20.01 1.93 0.41 0.00 0 0.00 0.000 20.30 1.00 0.41 0.00 0 0.00 0.000 20.31 1.40 0.41 0.41 0.00 0 0.00 0.000 20.31 1.40 0.41 0.40 0 0 0.00 0.000 <t< td=""><td>18.63</td><td>n-pentane</td><td>N_PENT</td><td>45.84</td><td>0.41</td><td>9.17</td><td>5</td><td>72.15</td><td>2.401</td></t<>	18.63	n-pentane	N_PENT	45.84	0.41	9.17	5	72.15	2.401
19.49 c-2-pentene C2PENE 2.66 0.41 0.53 5 70.13 2.000 19.70 2-methyl-2-butene B2E2M 3.29 0.41 0.66 5 70.13 2.000 19.82 3.91 0.41 0.00 0.00 0.000 0.000 20.01 1.93 0.41 0.00 0 0.00 0.000 20.14 3.71 0.41 0.00 0 0.00 0.000 20.30 1.00 0.41 0.00 0 0.00 0.000 20.37 1.40 0.41 0.00 0 0.00 0.000 20.87 1.42 0.41 0.00 0 0.00 0.000 20.87 1.92 0.41 0.00 0 0.00 0.000 20.87 1.92 0.41 0.00 0 0.00 0.000 20.87 1.92 0.41 0.30 0 0.00 0.000 20.98	19.09	t-2-pentene	T2PENE	3.65	0.41	0.73	5	70.13	2.000
19.70 2-methyl-2-butene B2E2M 3.29 0.41 0.66 5 70.13 2.000 19.82 3.91 0.41 0.00 0.000 0.000 20.01 1.93 0.41 0.00 0.000 0.000 20.14 3.71 0.41 0.00 0.000 0.000 20.30 1.00 0.41 0.00 0.000 0.000 20.31 2.2-dimethylbutane BU22DM 8.61 0.41 1.44 6 86.17 2.333 20.57 1.40 0.41 0.00 0.000 0.000 0.000 20.73 3.46 0.41 0.00 0.000 0.000 0.000 20.87 1.92 0.41 0.00 0.000 0.000 0.000 21.13 1.99 0.41 0.00 0.000 0.000 0.000 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21	19.49	c-2-pentene	C2PENE	2.66	0.41	0.53	5	70.13	2.000
19.82 3.91 0.41 0.00 0.000 20.01 1.93 0.41 0.00 0.000 0.000 20.14 3.71 0.41 0.00 0.000 0.000 20.30 1.00 0.41 0.00 0.000 0.000 20.30 1.00 0.41 0.00 0.000 0.000 20.41 2,2-dimethylbutane BU22DM 8.61 0.41 1.44 6 86.17 2.333 20.57 1.40 0.41 0.00 0.000 0.000 0.000 20.87 3.46 0.41 0.00 0.000 0.000 20.87 1.92 0.41 0.00 0.000 0.000 20.98 3.97 0.41 0.00 0.000 0.000 21.13 1.99 0.41 0.00 0.000 0.000 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.45 4-methyl-1-pentene P1E3ME 0.75 0.41 0.49 5 70.13	19.70	2-methyl-2-butene	B2E2M	3.29	0.41	0.66	5	70.13	2.000
20.01 1.93 0.41 0.00 0 0.00 20.14 3.71 0.41 0.00 0 0.00 0.000 20.30 1.00 0.41 0.00 0 0.00 0.000 20.31 2,2-dimethylbutane BU22DM 8.61 0.41 1.44 6 86.17 2.333 20.57 1.40 0.41 0.00 0 0.00 0.000 20.73 3.46 0.41 0.00 0 0.00 0.000 20.98 3.97 0.41 0.00 0 0.00 0.000 21.13 1.99 0.41 0.00 0 0.00 0.000 21.23 cyclopentene CPENTE 4.24 0.41 0.85 5 68.11 1.599 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.75 cyclopentane CPENTA 1.95 0.41 2.39 5	19.82			3.91	0.41	0.00	0	0.00	0.000
20.14 3.71 0.41 0.00 0 0.00 20.30 1.00 0.41 0.00 0 0.00 20.31 2.2-dimethylbutane BU22DM 8.61 0.41 1.44 6 86.17 2.333 20.57 1.40 0.41 0.00 0 0.00 0.000 20.73 3.46 0.41 0.00 0 0.00 0.000 20.87 1.92 0.41 0.00 0 0.00 0.000 20.98 3.97 0.41 0.00 0 0.00 0.000 21.13 Cyclopentene CPENTE 4.24 0.41 0.85 5 68.11 1.599 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.75 cyclopentane CPENTA 11.95 0.41 0.39 5 70.13 2.000 21.90 2.3-dimethylbutane BU23DM 19.23 0.41	20.01		· · · · ·	1.93	0.41	0.00	0	0.00	0.000
20.30 1.00 0.41 0.00 0.00 0.000 20.41 2,2-dimethylbutane BU22DM 8.61 0.41 1.44 6 86.17 2.333 20.57 1.40 0.41 0.00 0 0.00 0.000 20.73 3.46 0.41 0.00 0 0.00 0.000 20.87 1.92 0.41 0.00 0 0.00 0.000 20.98 3.97 0.41 0.00 0 0.00 0.000 21.13 1.99 0.41 0.00 0 0.00 0.000 21.45 4-methyl-1-pentene PTE4ME 2.85 0.41 0.48 6 84.16 2.001 21.60 3-methyl-1-pentene PTE3ME 0.75 0.41 0.48 6 84.16 2.001 21.80 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.31 2.34 2-methylpentane <td< td=""><td>20.14</td><td></td><td></td><td>3.71</td><td>0.41</td><td>0.00</td><td>0</td><td>0.00</td><td>0.000</td></td<>	20.14			3.71	0.41	0.00	0	0.00	0.000
20.41 2,2-dimethylbutane BU22DM 8.61 0.41 1.44 6 86.17 2.333 20.57 1.40 0.41 0.00 0 0.00 0.000 20.73 3.46 0.41 0.00 0 0.00 0.000 20.87 1.92 0.41 0.00 0 0.00 0.000 20.98 3.97 0.41 0.00 0 0.00 0.000 21.13 1.99 0.41 0.00 0 0.00 0.000 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.50 3-methyl-1-pentene P1E3ME 0.75 0.41 0.48 6 84.16 2.001 21.75 cyclopentane CPENTA 11.95 0.41 2.39 5 70.13 2.000 21.90 2.3-dimethylpentane BU23DM 19.23 0.41 3.21 6 86.17 2.333 2	20.30	······		1.00	0.41	0.00	0	0.00	0.000
20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.11 20.10 <th< td=""><td>20.41</td><td>2 2-dimethylhutane</td><td>BU22DM</td><td>8.61</td><td>0.41</td><td>1.44</td><td>6</td><td>86.17</td><td>2.333</td></th<>	20.41	2 2-dimethylhutane	BU22DM	8.61	0.41	1.44	6	86.17	2.333
20.73 3.46 0.41 0.00 0 0.00 20.87 1.92 0.41 0.00 0 0.00 20.98 3.97 0.41 0.00 0 0.00 21.13 1.99 0.41 0.00 0 0.00 21.23 cyclopentene CPENTE 4.24 0.41 0.85 5 68.11 1.599 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.60 3-methyl-1-pentene P1E3ME 0.75 0.41 0.13 6 84.16 2.001 21.90 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.31 2.77 0.41 0.00 0 0.00 0.000 22.69 2.2-dimethylpentane PEN22M 2.77 0.41 0.00 0 0.000 22.52 5.07 0.41 0.40 7 100.20 <td>20.57</td> <td></td> <td></td> <td>1.40</td> <td>0.41</td> <td>0.00</td> <td>0</td> <td>0.00</td> <td>0.000</td>	20.57			1.40	0.41	0.00	0	0.00	0.000
20.87 1.92 0.41 0.00 0.000 20.98 3.97 0.41 0.00 0.000 0.000 21.13 1.99 0.41 0.00 0 0.00 0.000 21.13 1.99 0.41 0.00 0 0.00 0.000 21.13 1.99 0.41 0.85 5 68.11 1.599 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.60 3-methyl-1-pentene P1E3ME 0.75 0.41 0.13 6 84.16 2.001 21.75 cyclopentane CPENTA 11.95 0.41 2.39 5 70.13 2.000 21.90 2.3-dimethylbutane BU3DM 19.23 0.41 3.21 6 86.17 2.333 22.31 2.77 0.41 0.00 0 0.00 0.000 22.52 5.07 0.41 0.40 7 100.20	20.73			3.46	0.41	0.00	0	0.00	0.000
20.97 0.41 0.00 0 0.00 0.000 21.13 1.99 0.41 0.00 0 0.00 0.000 21.13 1.99 0.41 0.00 0 0.00 0.000 21.23 cyclopentene CPENTE 4.24 0.41 0.85 5 68.11 1.599 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.60 3-methyl-1-pentene P1E3ME 0.75 0.41 0.13 6 84.16 2.001 21.75 cyclopentane CPENTA 11.95 0.41 2.39 5 70.13 2.000 21.90 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.31 2.77 0.41 0.00 0 0.00 0.000 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 <td>20.70</td> <td></td> <td></td> <td>1.92</td> <td>0.41</td> <td>0.00</td> <td>0</td> <td>0.00</td> <td>0.000</td>	20.70			1.92	0.41	0.00	0	0.00	0.000
20.30 1.99 0.41 0.00 0 0.00 0.000 21.13 1.99 0.41 0.85 5 68.11 1.599 21.23 cyclopentene CPENTE 4.24 0.41 0.85 5 68.11 1.599 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.60 3-methyl-1-pentene P1E3ME 0.75 0.41 0.13 6 84.16 2.001 21.75 cyclopentane CPENTA 11.95 0.41 2.39 5 70.13 2.000 21.90 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.14 2-methylpentane PENA2M 97.81 0.41 16.30 6 86.17 2.333 22.31 2.77 0.41 0.00 0.000 0.000 0.000 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 <td>20.07</td> <td></td> <td></td> <td>3.97</td> <td>0.41</td> <td>0.00</td> <td>Ō</td> <td>0.00</td> <td>0.000</td>	20.07			3.97	0.41	0.00	Ō	0.00	0.000
21.23 cyclopentene CPENTE 4.24 0.41 0.85 5 68.11 1.599 21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.60 3-methyl-1-pentene P1E3ME 0.75 0.41 0.13 6 84.16 2.001 21.75 cyclopentane CPENTA 11.95 0.41 2.39 5 70.13 2.000 21.90 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.14 2-methylpentane PENA2M 97.81 0.41 16.30 6 86.17 2.333 22.31 2.77 0.41 0.00 0.000 0.000 0.000 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 23.07 1-hexene HEX1E 2.40 0.41 0.40 6	21 13			1.99	0.41	0.00	Ō	0.00	0.000
21.45 4-methyl-1-pentene P1E4ME 2.85 0.41 0.48 6 84.16 2.001 21.60 3-methyl-1-pentene P1E3ME 0.75 0.41 0.13 6 84.16 2.001 21.75 cyclopentane CPENTA 11.95 0.41 2.39 5 70.13 2.000 21.90 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.14 2-methylpentane PENA2M 97.81 0.41 16.30 6 86.17 2.333 22.31 22.52 5.07 0.41 0.00 0 0.00 0.000 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.07 1-hexene HEX1E 2.40 0.41 0.40 6<	21.10	cyclopentene	CPENTE	4.24	0.41	0.85	5	68.11	1.599
21.60 3-methyl-1-pentene P1E3ME 0.75 0.41 0.13 6 84.16 2.001 21.75 cyclopentane CPENTA 11.95 0.41 2.39 5 70.13 2.000 21.90 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.14 2-methylpentane PENA2M 97.81 0.41 16.30 6 86.17 2.333 22.31 2.31 2.77 0.41 0.00 0 0.00 0.000 22.52 5.07 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.40 1 1.50 0.41 0.40 6 84.16 2.001 23.40	21.45	4-methyl-1-pentene	P1E4ME	2.85	0.41	0.48	6	84.16	2.001
21.50 Orderign Provide CPENTA 11.95 0.41 2.39 5 70.13 2.000 21.90 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.14 2-methylpentane PENA2M 97.81 0.41 16.30 6 86.17 2.333 22.31 2.77 0.41 0.00 0 0.00 0.000 22.52 5.07 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0 0.000 0.000 0.000 23.63 n-hexane	21.60	3-methyl-1-pentene	P1E3ME	0.75	0.41	0.13	6	84.16	2.001
21.00 2,3-dimethylbutane BU23DM 19.23 0.41 3.21 6 86.17 2.333 22.14 2-methylpentane PENA2M 97.81 0.41 16.30 6 86.17 2.333 22.31 2.31 2.77 0.41 0.00 0 0.00 0.000 22.52 5.07 0.41 0.40 7 100.20 2.286 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PENA3M 67.38 0.41 11.23 6 86.17 2.333 23.07 1-hexene HEX1E 2.40 0.41 0.40 7 100.20 2.286 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0 0.00 0.000 0.000 0.000 0.000 <td< td=""><td>21.00</td><td></td><td>CPENTA</td><td>11.95</td><td>0.41</td><td>2.39</td><td>5</td><td>70.13</td><td>2.000</td></td<>	21.00		CPENTA	11.95	0.41	2.39	5	70.13	2.000
22.14 2-methylpentane PENA2M 97.81 0.41 16.30 6 86.17 2.333 22.31 2.77 0.41 0.00 0 0.00 0.000 22.52 5.07 0.41 0.00 0 0.00 0.000 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PENA3M 67.38 0.41 11.23 6 86.17 2.333 23.07 1-hexene HEX1E 2.40 0.41 0.40 7 100.20 2.286 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 </td <td>21.90</td> <td>2 3-dimethylbutane</td> <td>BU23DM</td> <td>19.23</td> <td>0.41</td> <td>3.21</td> <td>6</td> <td>86.17</td> <td>2.333</td>	21.90	2 3-dimethylbutane	BU23DM	19.23	0.41	3.21	6	86.17	2.333
22.31 2.77 0.41 0.00 0 0.00 22.52 5.07 0.41 0.00 0 0.00 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PENA3M 67.38 0.41 11.23 6 86.17 2.333 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0 0.00 0.000 23.63 n-hexane N_HEX 169.93 0.41 28.32 6 86.17 2.333 23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.00 0.000 0.000	22 14	2-methylpentane	PENA2M	97.81	0.41	16.30	6	86.17	2.333
22.52 5.07 0.41 0.00 0 0.00 22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PENA3M 67.38 0.41 11.23 6 86.17 2.333 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0 0.000 0.000 23.63 n-hexane N_HEX 169.93 0.41 28.32 6 86.17 2.333 23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.60 6 84.16 2.001	22.31			2.77	0.41	0.00	0	0.00	0.000
22.69 2,2-dimethylpentane PEN22M 2.78 0.41 0.40 7 100.20 2.286 22.81 3-methylpentane PENA3M 67.38 0.41 11.23 6 86.17 2.333 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0 0.00 0.000 23.63 n-hexane N_HEX 169.93 0.41 28.32 6 86.17 2.333 23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.60 6 84.16 2.001 24.18 c-3-hexene C.3HEXE 3.93 0.41 0.66 6 84.16 2.001	22.52	· · · · · · · · · · · · · · · · · · ·		5.07	0.41	0.00	0	0.00	0.000
22.81 3-methylpentane PENA3M 67.38 0.41 11.23 6 86.17 2.333 23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0 0.00 0.000 23.63 n-hexane N_HEX 169.93 0.41 28.32 6 86.17 2.333 23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.60 6 84.16 2.001	22 69	2 2-dimethylpentane	PEN22M	2.78	0.41	0.40	7	100.20	2.286
23.07 1-hexene HEX1E 2.40 0.41 0.40 6 84.16 2.001 23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0 0.00 0.000 23.63 n-hexane N_HEX 169.93 0.41 28.32 6 86.17 2.333 23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.00 0 0.000 0.000 24.18 c-3-hexene C3HEXE 3.93 0.41 0.66 6 84.16 2.001	22.03	3-methylpentane	PENA3M	67.38	0.41	11.23	6	86.17	2.333
23.27 C6 olefin C6OLE1 1.50 0.41 0.25 6 84.16 2.001 23.40 1.85 0.41 0.00 0.000 0.000 23.63 n-hexane N_HEX 169.93 0.41 28.32 6 86.17 2.333 23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.00 0 0.00 0.000 24.18 c-3-bevene C3HEXE 3.93 0.41 0.66 6 84.16 2.001	23.07	1-hexene	HEX1E	2.40	0.41	0.40	6	84.16	2.001
23.40 1.85 0.41 0.00 0 0.00 0.000 23.63 n-hexane N_HEX 169.93 0.41 28.32 6 86.17 2.333 23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.00 0 0.000 0.000 24.18 c-3-beyene C3HEXE 3.93 0.41 0.66 6 84.16 2.001	23.27	C6 olefin	C6OLE1	1.50	0.41	0.25	6	84.16	2.001
23.63 n-hexane N_HEX 169.93 0.41 28.32 6 86.17 2.333 23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.00 0 0.00 0.000 24.18 c-3-beyene C3HEXE 3.93 0.41 0.66 6 84.16 2.001	23.40			1.85	0.41	0.00	0	0.00	0.000
23.87 t-2-hexene T2HEXE 3.61 0.41 0.60 6 84.16 2.001 24.03 2.63 0.41 0.00 0 0.00 0.000 24.18 c-3-bevene C3HEXE 3.93 0.41 0.66 6 84.16 2.001	23.63	n-bexane	N HEX	169.93	0.41	28.32	6	86.17	2.333
24.03 2.63 0.41 0.00 0.00 0.000 24.18 c-3-bevene C3HEXE 3.93 0.41 0.66 6 84.16 2.001	20.00	t-2-hexene	T2HEXE	3.61	0.41	0.60	6	84.16	2.001
24 18 c-3-bevene C3HEXE 3.93 0.41 0.66 6 84 16 2.001	20.07			2.63	0.41	0.00	0	0.00	0.000
	24.00	c-3-bevene	C3HEXE	3.93	0.41	0.66	6	84.16	2.001
24 34 3.57 0.41 0.00 0 0.00 0.000	24.10			3.57	0.41	0.00	0	0.00	0.000
24 50 trans-3-methyl-2-pentene P2F3MT 4.93 0.41 0.82 6 84.16 2.001	24.04	trans-3-methyl-2-nentene	P2E3MT	4 93	0.41	0.82	6	84.16	2.001
24.63 2.61 0.41 0.00 0 0.00 0.000	24.50			2 61	0.41	0.00	Ō	0.00	0.000
24 74 8 62 0.41 0.00 0 0.00 0.000	24.00		+	8.62	0.41	0.00	Ō	0.00	0.000
24.84 methylcyclopentane MCYPNA 136.21 0.41 22.70 6 84.16 2.001	24.14	methylcyclopentape	MCYPNA	136.21	0.41	22.70	6	84.16	2.001

,

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	стон
25.03	2,4-dimethylpentane	PEN24M	18.02	0.41	2.57	7	100.20	2.286
25.26			4.76	0.41	0.00	0	0.00	0.000
25.47	2,2,3-trimethylbutane	BU223M	1.36	0.41	0.19	7	100.20	2.286
25.60			1.66	0.41	0.00	0	0.00	0.000
25.91	benzene	BENZE	65.02	0.41	10.84	6	78.11	1.000
26.16	3,3-dimethylpentane	PEN33M	10.69	0.41	1.53	7	100.20	2.286
26.33	cyclohexane	CYHEXA	200.73	0.41	33.46	6	84.16	2.001
26.69	2-methylhexane	HEXA2M	219.25	0.41	31.32	7	98.19	2.001
26.78	2,3-dimethylpentane	PEN23M	113.27	0.41	16.18	7	100.20	2.286
26.93	cyclohexene	CYHEXE	38.63	0.41	6.44	6	82.15	1.668
27.07	3-methylhexane + pentanal	HEXA3M	331.47	0.41	47.35	7	100.20	2.286
27.39	1,3-dimethylcyclopentane	CPA13M	102.70	0.41	14.67	7	98.19	2.001
27.51	3-ethylpentane	PA3ET	137.83	0.41	17.23	8	114.23	2.251
27.63	2,2,4-trimethylpentane	PA224M	199.39	0.41	24.92	8	114.23	2.251
27.87	C7 olefin	C7OLE2	1.06	0.41	0.15	7	98.19	2.001
28.09	n-heptane	N_HEPT	956.15	0.41	136.59	7	100.20	2.286
28.49	C8 olefin	C8OLE3	1.17	0.41	0.15	8	112.21	2.000
29.06	methylcyclohexane	MECYHX	1162.22	0.41	166.03	7	98.19	2.001
29.15	C8 paraffin	C8PA1	93.82	0.41	11.73	8	114.23	2.251
29.44	2,5-diemthylhexane	HEX25M	94.81	0.41	11.85	8	114.23	2.251
29.52	2,4-diemthylhexane	HEX24M	292.89	0.41	36.61	8	114.23	2.251
29.85	C8 paraffin	C8PA2	192.19	0.41	24.02	8	114.23	2.251
30.14			173.15	0.41	0.00	0	0.00	0.000
30.24	2,3,-trimethylpentane	PA234M	44.62	0.41	5.58	8	114.23	2.251
30.44	toluene	TOLUE	854.22	0.41	122.03	7	92.14	1.144
30.62	2,3-dimethylhexane	HX23DM	163.36	0.41	20.42	8	114.23	2.251
30.70			89.85	0.41	0.00	0	0.00	0.000
30.81	2-methylheptane	HEP2ME	961.28	0.41	106.81	9	128.26	2.223
30.88	4-methylheptane	HEP4ME	293.55	0.41	32.62	9	128.26	2.223
31.01	C8 paraffin	C8PA3	110.31	0.41	13.79	8	114.23	2.251
31.12	3-methylheptane	НЕРЗМЕ	850.20	0.41	106.28	8	114.23	2.251
31.37			690.79	0.41	0.00	0	0.00	0.000
31.44	2,2,5-trimethylhexane	HEX225	277.78	0.41	30.86	9	128.26	2.223
31.56	octene-1	OCT1E	14.32	0.41	1.79	8	112.21	2.000
31.75	1,1-dimethylcyclohexane	CHX11M	237.16	0.41	29.65	8	112.21	2.000
31.84			104.26	0.41	0.00	0	0.00	0.000
31.90			228.67	0.41	0.00	0	0.00	0.000
32.02			46.20	0.41	0.00	0	0.00	0.000
32.12	n-octane	N_OCT	2605.36	0.41	325.67	8	114.23	2.251
32.31			84.76	0.41	0.00	0	0.00	0.000
32.43			227.26	0.41	0.00	0	0.00	0.000
32.55			2.51	0.41	0.00	0	0.00	0.000
32.69			71.39	0.41	0.00	0	0.00	0.000
32.83	2,3,5-trimethylhexane	HEX235	41.15	0.41	4.57	9	128.26	2.223
32.91	2,4-dimethylheptane	HEP24D	79.87	0.41	8.87	9	128.26	2.223
33.06	4,4-dimethylheptane	HEP44D	209.44	0.41	23.27	9	128.26	2.223
33.20			24.20	0.41	0.00	0	0.00	0.000
33.28	2,6-dimethylheptane	HEP26D	572.78	0.41	63.64	9	128.26	2.223
33.42			293.37	0.41	0.00		0.00	0.000
33.53	2,5-dimethylheptane	HEP25D	1260.22	0.41	140.02	9	128.26	2.223
33.73	3,3-dimethylheptane	HEP33D	880.57	0.41	97.84	9	128.26	2.223
33.84	C9 olefin	C9OLE1	223.96	0.41	24.88	9	126.24	2.001
33.92			113.38	0.41	0.00	0	0.00	0.000
34.03			65.98	0.41	0.00	0	0.00	0.000

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
34.14	ethylbenzene	ETBZ	858.78	0.41	107.35	8	106.16	1.250
34.32	C9 olefin	C9OLE3	848.74	0.41	94.30	9	126.24	2.001
34.45	m- & p-xylene	MP_XYL	2199.45	0.41	274.93	8	106.16	1.250
34.57	2-methyloctane	OCT2ME	1237.63	0.41	137.51	9	128.26	2.223
34.72			48.25	0.41	0.00	0	0.00	0.000
34.84	3-methyloctane	OCT3ME	1137.64	0.41	126.40	9	128.26	2.223
35.01	C9 paraffin	C9PAR1	117.56	0.41	13.06	9	128.26	2.223
35.09	styrene + heptanal	STYR	17.87	0.41	2.23	8	104.14	1.000
35.18			274.69	0.41	0.00	0	0.00	0.000
35.32	o-xylene	O_XYL	950.87	0.41	118.86	8	106.17	1.251
35.45	•		642.73	0.41	0.00	0	0.00	0.000
35.57	nonene-1	NONE1	509.27	0.41	56.59	9	126.24	2.001
35.67	C9 paraffin	C9PAR2	314.62	0.41	34.96	9	128.26	2.223
35.80	n-nonane	N_NON	3457.87	0.41	384.21	9	128.26	2.223
36.06	C9 olefin	C9OLE4	126.32	0.41	14.04	9	126.24	2.001
36.22			86.06	0.41	0.00	0	0.00	0.000
36.30			610.74	0.41	0.00	0	0.00	0.000
36.48	isopropylbenzene	IPRBZ	566.95	0.41	62.99	9	120.20	1.335
36.66			82.32	0.41	0.00	0	0.00	0.000
36.76	C9 paraffin 3	C9PA3	902.50	0.41	100.28	9	128.26	2.223
36.87			99.47	0.41	0.00	0	0.00	0.000
37.06	isopropylcyclohexane	IPCYHX	1926.59	0.41	214.07	9	126.24	2.001
37.21	2,6-dimethyloctane	OCT26D	312.04	0.41	31.20	10	142.29	2.201
37.27			240.46	0.41	0.00	0	0.00	0.000
37.37	3,6-dimethyloctane	OCT36M	639.59	0.41	63.96	10	142.29	2.201
37.50	n-propylbenzene	N_PRBZ	705.06	0.41	78.34	9	120.20	1.335
37.61			123.96	0.41	0.00	0	0.00	0.000
37.73	m-ethyltoluene	M_ETOL	1013.19	0.41	112.58	9	120.20	1.335
37.80	p-ethyltoluene	P_ETOL	803.32	0.41	89.26	9	120.20	1.335
37.90			202.61	0.41	0.00	0	0.00	0.000
37.96	1,3,5-trimethylbenzene	BZ135M	1097.96	0.41	122.00	9	120.20	1.335
38.04	•		675.69	0.41	0.00	0	0.00	0.000
38.18	C10 paraffin	C10P_A	733.96	0.41	73.40	10	142.29	2.201
38.27	• • • • • • • • • • • • • • • • • • •		655.86	0.41	0.00	0	0.00	0.000
38.38	o-ethyltoluene	O_ETOL	663.10	0.41	73.68	9	120.20	1.335
38.49			91.13	0.41	0.00	0	0.00	0.000
38.59			336.95	0.41	0.00	0	0.00	0.000
38.70			378.14	0.41	0.00	0	0.00	0.000
38.88	1,2,4-trimethylbenzene	BZ124M	2071.91	0.41	230.21	9	120.20	1.335
39.01			339.94	0.41	0.00	0	0.00	0.000
39.09			240.38	0.41	0.00	0	0.00	0.000
39.18	n-decane	N_DEC	2992.16	0.41	299.22	10	142.29	2.201
39.30	C10 aromatic	C10AR1	122.30	0.41	12.23	10	134.22	1.401
39.39	isobutylbenzene	I_BUBZ	330.13	0.41	33.01	10	134.22	1.401
39.48	sec-butylbenzene	S_BUBZ	420.72	0.41	42.07	10	134.22	1.401
39.72	C10 aromatic 7	C10AR7	440.04	0.41	44.00	10	134.22	1.401
39.85	1,2,3-trimethylbenzene	BZ123M	1111.38	0.41	123.49	9	120.20	1.335
39.98	C10 paraffin	C10P_C	796.15	0.41	79.62	10	142.29	2.201
40.17	limonene	LIMON	315.07	0.41	31.51	10	136.24	1.601
40.36	indan	INDAN	487.88	0.41	54.21	9	118.17	1.111
40.50	indene	INDENE	741.24	0.41	82.36	9	116.15	0.888
40.62	diethylbenzene	DETBZ1	225.99	0.41	22.60	10	134.22	1.401
40.70	C10 aromatic	C10AR2	456.43	0.41	45.64	10	134.22	1.401
40.88	1,4-diethylbenzene	DETBZ2	680.21	0.41	68.02	10	134.22	1.401

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ PPB	V	C_N	MW	СТОН
41.03	1,2-diethylbenzene	DETBZ3	375.66	0.41	37.57	10	134.22	1.401
41.13			382.39	0.41	0.00	0	0.00	0.000
41.25	2-propyltoluene	TOL2PR	507.13	0.41	50.71	10	134.22	1.401
41.35			85.20	0.41	0.00	0	0.00	0.000
41.46			374.08	0.41	0.00	0	0.00	0.000
41.53	C10 aromatic	C10AR4	259.38	0.41	25.94	10	134.22	1.401
41.61	C10 aromatic	C10AR5	221.97	0.41	22.20	10	134.22	1.401
41.78	isopropyltoluene	IPRTOL	374.28	0.41	37.43	10	134.22	1.401
41.94			182.84	0.41	0.00	0	0.00	0.000
42.09			248.26	0.41	0.00	0	0.00	0.000
42.16			144.08	0.41	0.00	0	0.00	0.000
42.29	n-undecane	N UNDE	1013.72	0.41	92.16	11	156.30	2.182
42.49	C10 aromatic	C10AR6	160.67	0.41	16.07	10	134.22	1.401
42.55			110.63	0.41	0.00	0	0.00	0.000
42.60	· · · · · · · · · · · · · · · · · · ·		150.72	0.41	0.00	0	0.00	0.000
42.00	C11 paraffin	C11P A	32.88	0.41	2 99	11	156.32	2 183
42.74	1.2.4.5-tetramethylbenzene	B71245	168.85	0.41	16.89	10	134 22	1 401
42.04	1,2,3,5-tetramethylbenzene	B71235	139.96	0.41	14.00	10	134 22	1 401
42.54	1,2,3,3-tetrametryiberizerie	021200	84.65	0.41	0.00	0	0.00	0.000
43.07			66 73	0.41	0.00	0	0.00	0,000
43.19			87.07	0.41	0.00	0	0.00	0.000
43.23			89.01	0.41	0.00	0	0.00	0.000
43.33	O11 peroffic	C11P P	01.01	0.41	8.36	11	156 32	2 183
43.53			91.91	0.41	0.00		0.02	2.100
43.65			119.40	0.41	0.00	0	0.00	0.000
43.77		074004	119.90	0.41	10.00	10	124.00	1 401
43.96	1,2,3,4-trimethylbenzene	BZ1234	183.33	0.41	18.33	10	134.22	0.000
44.08			66.00	0.41	0.00	0	0.00	0.000
44.20	· · · · · · · · · · · · · · · · · · ·		49.50	0.41	0.00	0	0.00	0.000
44.28			90.36	0.41	0.00	0	0.00	0.000
44.41		0.110.000	59.19	0.41	0.00	0	0.00	0.000
44.57	C11 aromatic	СПАНЗ	22.09	0.41	2.01		148.22	1.453
44.76			18.33	0.41	0.00	0	0.00	0.000
44.93	naphthalene	NAPHIH	63.96	0.41	6.40	10	128.16	0.800
45.06	· · · · · · · · · · · · · · · · · · ·		25.52	0.41	0.00	0	0.00	0.000
45.19	n-dodecane	N_DODE	84.84	0.41	7.07	12	1/0.34	2.168
45.29			32.65	0.41	0.00	0	0.00	0.000
45.40			8.48	0.41	0.00	0	0.00	0.000
45.50			8.32	0.41	0.00	0	0.00	0.000
45.64			11.90	0.41	0.00		0.00	0.000
45.74			4.03	0.41	0.00		0.00	0.000
45.88			12.09	0.41	0.00	0	0.00	0.000
				0.000				
	Total C3		14.57	0.02%				
	Total C4		51.33	0.08%				
L	Total C5		197.56	0.33%		<u> </u>		
	Total C6		584.41	0.96%	<u></u>		<u> </u>	
	Total C7		4213.29	6.94%		 		
	Total C8		11829.94	19.47%		<u> </u>		ļ
	Total C9		18274.99	30.08%		<u> </u>		↓
	Total C10		18572.65	30.57%		ļ		╄────┤
	Total C11		6152.64	10.13%				ļ
	Total C12		860.61	1.42%				

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
3.07			8.49	0.27	0.00	0	0.00	0.000
3.80			1.15	0.27	0.00	0	0.00	0.000
7.06	propane	N_PROP	5.34	0.27	1.78	3	44.10	2.669
10.90	isobutane	I_BUTA	11.21	0.27	2.80	4	58.12	2.500
13.00	n-butane	N_BUTA	29.08	0.27	7.27	4	58.12	2.500
13.70	t-2-butene	T2BUTE	1.73	0.27	0.43	4	56.11	2.001
14.65	c-2-butene	C2BUTE	4.70	0.27	1.18	4	56.11	2.001
15.37			2.72	0.27	0.00	Ó	0.00	0.000
15.61			3.12	0.27	0.00	0	0.00	0.000
15.79			6.63	0.27	0.00	0	0.00	0.000
16.44	3-methyl-1-butene	B1E3ME	5.54	0.27	1.11	5	70.13	2.000
16.64			6.03	0.27	0.00	0	0.00	0.000
17.21	isopentane	IPENTA	65.95	0.27	13.19	5	72.15	2.401
17.74			3.83	0.27	0.00	0	0.00	0.000
17.99	1-pentene	PENTE1	41.91	0.27	8.38	5	70.13	2.000
18.18			0.86	0.27	0.00	0	0.00	0.000
18.43	2-methyl-1-butene	B1E2M	1.53	0.27	0.31	5	70.13	2.000
18.63	n-pentane	N_PENT	54.40	0.27	10.88	5	72.15	2.401
19.08	t-2-pentene	T2PENE	5.41	0.27	1.08	5	70.13	2.000
19.48	c-2-pentene	C2PENE	6.01	0.27	1.20	5	70.13	2.000
19.69	2-methyl-2-butene	B2E2M	4.46	0.27	0.89	5	70.13	2.000
19.83			6.07	0.27	0.00	0	0.00	0.000
20.16			8.78	0.27	0.00	0	0.00	0.000
20.40	2,2-dimethylbutane	BU22DM	15.36	0.27	2.56	6	86.17	2.333
20.73			9.00	0.27	0.00	0	0.00	0.000
20.98			10.48	0.27	0.00	0	0.00	0.000
21.24	cyclopentene	CPENTE	9.71	0.27	1.94	5	68.11	1.599
21.47	4-methyl-1-pentene	P1E4ME	6.91	0.27	1.15	6	84.16	2.001
21.74	cyclopentane	CPENTA	14.77	0.27	2.95	5	70.13	2.000
21.89	2,3-dimethylbutane	BU23DM	23.57	0.27	3.93	6	86.17	2.333
22.13	2-methylpentane	PENA2M	102.96	0.27	17.16	6	86.17	2.333
22.32			6.20	0.27	0.00	0	0.00	0.000
22.53			6.30	0.27	0.00	0	0.00	0.000
22.80	3-methylpentane	PENA3M	74.33	0.27	12.39	6	86.17	2.333
23.05	1-hexene	HEX1E	3.37	0.27	0.56	6	84.16	2.001
23.22	C6 olefin	C6OLE1	2.73	0.27	0.46	6	84.16	2.001
23.41			2.62	0.27	0.00	0	0.00	0.000
23.62	n-hexane	N_HEX	180.62	0.27	30.10	6	86.17	2.333
23.87	t-2-hexene	T2HEXE	4.04	0.27	0.67	6	84.16	2.001
24.04			1.10	0.27	0.00	0	0.00	0.000
24.19	c-3-hexene	C3HEXE	2.98	0.27	0.50	6	84.16	2.001
24.35			2.87	0.27	0.00	0	0.00	0.000
24.49	trans-3-methyl-2-pentene	P2E3MT	2.15	0.27	0.36	6	84.16	2.001
24.74			9.01	0.27	0.00	0	0.00	0.000
24.83	methylcyclopentane	MCYPNA	141.29	0.27	23.55	6	84.16	2.001
25.02	2,4-dimethylpentane	PEN24M	18.38	0.27	2.63	7	100.20	2.286
25.25			3.03	0.27	0.00	0	0.00	0.000
25.43	2,2,3-trimethylbutane	BU223M	1.88	0.27	0.27	7	100.20	2.286
25.90	benzene	BENZE	70.43	0.27	11.74	6	78.11	1.000
26.15	3,3-dimethylpentane	PEN33M	12.40	0.27	1.77	7	100.20	2.286
26.33	cyclohexane	CYHEXA	215.52	0.27	35.92	6	84.16	2.001
26.68	2-methylhexane	HEXA2M	234.55	0.27	33.51	7	98.19	2.001
26.78	2,3-dimethylpentane	PEN23M	121.18	0.27	17.31	7	100.20	2.286
26.92	cyclohexene	CYHEXE	41.76	0.27	6.96	6	82.15	1.668

277 3-methylpexane + pentanal HEXA3M 357.14 0.27 51.02 7 100.20 228 273 61.3-dimethylcylopentane PA3ET 110.79 0.27 15.83 7 98.19 2001 275 62 2-dimethylcylopentane PA3ET 147.26 0.27 18.41 8 114.22 228 276 82 2-dimethylcylopentane N_HEPT 1044.76 0.27 149.25 7 98.19 2.001 28 96 C6 colein CBOLE3 1.35 0.27 0.00	SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV		MW	СТОН
27.38 1.3-dimethylopentane PA3ET 147.26 2.27 16.34 6 14.22 2.25 27.60 2.24-trimethylopentane PA3ET 147.26 2.27 16.41 6 14.22 2.25 27.68 C7 olefin C7.0LE2 1.81 0.27 0.26 7 98.19 2.001 28.09 n-heptane N_HEPT 1044.76 0.27 149.25 7 100.20 2.286 28.64 C8 olefin C80CL3 1.35 0.27 0.00 0.000 0.000 29.16 D56 methylcyclohexane MECYHX 1270.19 0.27 181.48 18.14.22 2.251 29.42 J5-diemthylhexane HEX23M 130.10 0.27 0.00 0.00 0.00 29.42 25-diemthylhexane HEX24M 321.40 0.27 130.28 8 14.23 2.251 29.84 C8 parafin C6PA2 133.60 0.77 2.67 8 114.23 2.251 29.41 101.41 92.51 0.27 13.64 7 92.14	27.07	3-methylhexane + pentanal	НЕХАЗМ	357.14	0.27	51.02	7	100.20	2.286
27.50 3-ethylpontane PA2ET 147.26 0.27 18.41 81 14.23 22.81 27.66 22.4-trimethylpontane PA2E4M 213.77 0.27 0.26 7 190.20 2286 27.66 27.0-lefin C7.0-LE2 1.81 0.27 0.28 7 190.20 2286 28.49 C6 dolin CBOLE3 1.35 0.27 0.00 0 0.00 0.00 28.46 C6 olein CBOLE3 1.35 0.27 0.00 0 0.00	27.38	1,3-dimethylcyclopentane	CPA13M	110.79	0.27	15.83	7	98.19	2.001
27.62 2.2.4-trimethylpentane PA224M 213.77 0.27 26.72 86.14.23 22.81 27.66 C7 Olefin C7OLEZ 1.61 0.27 0.26 7 96.19 2000 28.64 C8 olefin C8OLE3 1.63 0.27 0.01 8 112.21 2.000 29.05 methylcyclohexane MECYHX 127.019 0.27 181.44 7 98.19 2.000 29.43 2.5-diamthylhexane HEX25M 104.11 0.27 181.42 2.251 29.32 0.56 0.27 0.00 0 0.00 0.00 29.43 2.5-diamthylhexane HEX24M 321.80 0.27 40.23 8 114.23 2.251 30.14 102.51 0.27 0.00 0.00 0.00 0.000	27.50	3-ethylpentane	PA3ET	147.26	0.27	18.41	8	114.23	2.251
27.86 C7 olefin C7CLE2 1.81 0.27 0.26 7 98.19 2001 28.09 h-Neptane N_HEPT 1044 7 0.07 6 11.22 2000 28.64 C8 olefin C80LE3 1.35 0.27 0.07 6 11.22 2000 29.05 methylcyclohexane MECYHX 1270.19 0.27 181.46 7 98.19 2001 29.14 C8 paratlin C8PA1 102.11 0.27 10.00 0 0.00 0.00 29.52 24.deimthylhexane HEX24M 301.80 0.27 40.23 8 114.23 2251 29.58 24.deimthylhexane HEX24M 301.80 0.27 40.23 8 114.23 2251 30.41 C27 5.07 6 114.23 2251 0.27 5.07 6 114.23 2251 30.42 2.3.trimethylpentane PA234M 47 70 2.7 5.97 6 114.23 2251 30.61 2.3.deimethylpatae HP234M <	27.62	2,2,4-trimethylpentane	PA224M	213.77	0.27	26.72	8	114.23	2.251
28.09 n-heptane N HEPT 1044.76 0.27 149.25 7 100.20 22.86 28.48 C6 olefin C80LE3 1.35 0.27 0.00 0 0.000 29.05 methylcyclohexane MECYHX 1270.19 0.27 181.46 7 98.19 2.001 29.14 C8 paraffin C8PA1 102.11 0.27 181.44 2.251 29.32 2.5-diemthylhexane HEX24M 321.80 0.27 40.03 8 114.23 2.251 30.14 32.5-diemthylhexane HEX24M 321.80 0.27 2.60 0.00	27.86	C7 olefin	C7OLE2	1.81	0.27	0.26	7	98.19	2.001
28.48 C6 clefin C6OLE3 1.35 0.27 0.17 6 11221 2000 28.64 2.59 0.27 181.46 7 98.19 2001 29.05 methylcyclohexane MECYHX 1270.19 0.27 181.46 7 98.19 2001 29.32 P 0.56 0.27 0.00 0 0.000 0.00 <td>28.09</td> <td>n-heptane</td> <td>N_HEPT</td> <td>1044.76</td> <td>0.27</td> <td>149.25</td> <td>7</td> <td>100.20</td> <td>2.286</td>	28.09	n-heptane	N_HEPT	1044.76	0.27	149.25	7	100.20	2.286
28.64 C.259 0.07 0.00 0 0.000 29.05 methylcyclobexne MECYHX 1270.19 0.27 181.46 7 98.19 2001 29.05 methylcyclobexne C8PA1 102.11 0.27 12.76 8 114.23 2.251 29.32 C.5-diemthylhexane HEX24M 321.80 0.27 40.23 8 114.23 2.251 29.84 C.5 paraflin C8PA2 213.85 0.27 2.0.73 8 114.23 2.251 30.14 192.51 0.27 0.00 0 0.00 0.000 30.43 toluene TOLUE 968.94 0.27 138.42 7 8 114.23 2.251 30.70 100.14 0.27 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	28.48	C8 olefin	C8OLE3	1.35	0.27	0.17	8	112.21	2.000
29.05 methylcyclohexane MECYHX 1270.19 0.27 11.46 7 98.19 2001 29.14 C8 paraffin C8PA1 102.11 0.27 12.68 114.23 2.251 29.32 2.5-dienthylhexane HEX25M 104.12 0.27 0.00 0.000 0.000 29.43 2.5-dienthylhexane HEX24M 31.80 0.27 40.23 8 114.23 2.251 29.84 C8 paraffin C8PA2 213.85 0.27 5.97 8 114.23 2.251 30.14 192.51 0.27 5.97 8 114.23 2.251 30.43 toluene TOLUE 968.94 0.27 13.842 7 92.14 1.144 0.62 2.3-dimstrylhexane HK23DM 183.67 0.27 12.083 114.23 2.251 30.70 100.14 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	28.64			2.59	0.27	0.00	0	0.00	0.000
28.14 CB paraffin CBPA1 102.11 0.27 12.76 6 114.23 2.251 29.32 0.56 0.27 0.00 0.00 0.00 0.00 29.43 2.5-diemthylhexane HEX25M 104.12 0.27 13.02 8 114.23 2.251 29.84 CB paraffin CBPA2 213.85 0.27 40.03 8 114.23 2.251 30.14 192.51 0.27 5.97 6 114.23 2.251 30.43 100.41 0.27 5.97 6 114.23 2.251 30.43 100.42 -1.01.14 0.27 5.97 6 114.23 2.251 30.43 100.42 0.21 114.23 2.251 11.14 3.22 2.251 30.81 2-methylheptane HEP2ME 1098.25 0.27 122.08 8 114.23 2.251 31.00 CB paraffin CBPA 122.04 122.03 9 128.26 2.223 31.00 CB paraffin CBPA 122.04 121.056 0.27 156.4	29.05	methylcyclohexane	MECYHX	1270.19	0.27	181.46	7	98.19	2.001
29.32 0.56 0.27 0.00 0.000 0.000 29.43 2,5-diemthylhexane HEX24M 104.12 0.27 13.02 8 114.23 2.251 29.84 CB paraffin C8PA2 213.85 0.27 26.03 8 114.23 2.251 30.14 192.51 0.27 5.97 8 114.23 2.251 30.44 192.51 0.27 5.97 8 114.23 2.251 30.63 2.3-trimethylpentane PA234M 47.73 0.27 5.97 8 114.23 2.251 30.63 2.3-dimethylnexane HX23DM 183.67 0.27 12.96 8 114.23 2.251 30.63 4-methylneptane HEP2ME 1096.25 0.27 12.03 9 128.26 2.223 31.02 Amethylneptane HEP2ME 1098.25 0.27 15.64 8 114.23 2.251 31.12 Dotto Cotto 0.00 0.00	29.14	C8 paraffin	C8PA1	102.11	0.27	12.76	8	114.23	2.251
29.43 2.5-diemthylhexane HEX25M 104.12 0.27 40.02 6 114.23 2.251 29.52 2.4-diamthylhexane HEX24M 321.80 0.27 40.02 8 114.23 2.251 30.14 CBPAC 213.85 0.27 26.73 8 114.23 2.251 30.14 PA2.3.trimethylpentane PA234M 47.73 0.27 5.97 8 114.23 2.251 30.43 toluene TOLUE 968.94 0.27 138.42 7 92.14 1.144 30.62 2.9-dimethylheptane HEP2ME 1098.25 0.27 128.68 114.23 2.251 30.80 remethylheptane HEP2ME 1098.25 0.27 15.64 8 114.23 2.251 31.12 -methylheptane HEP3ME 972.48 0.27 15.64 8 114.23 2.251 31.36 oct paraffin C8PA3 125.08 0.27 15.64 8 114.23 2.251 31.36 oct paraffin C8PA3 125.08 0.27 10.0	29.32	•		0.56	0.27	0.00	0	0.00	0.000
29:52 2.4-diemthylhexane HEX24M 321.80 0.27 40.23 8 114.23 2.251 29:84 C6 parafin C6PA2 213.85 0.27 26.73 8 114.23 2.251 30:14 192:51 0.27 0.00 0.000 0.000 0.000 30:43 toluene TOLUE 968.94 0.27 138.42 7 92.14 1.144 30:63 2,3-dimethylhexane HX23DM 183.67 0.27 22.96 8 114.23 2.251 30:70 100.14 0.27 126.03 9 128.26 2.223 30:81 2-methylheptane HEP4ME 331.69 0.27 128.65 9 128.26 2.223 31:12 methylheptane HEP4ME 331.89 0.27 15.64 8 114.23 2.251 31:12 methylheptane HEP4ME 331.89 0.27 15.64 8 128.26 2.233 31:42 2,2,5-trimethylhexane HEX225 316.86 0.27 1.91 8 112.21 2.000	29.43	2,5-diemthylhexane	HEX25M	104.12	0.27	13.02	8	114.23	2.251
29.84 C8 paraffin C8PA2 213.85 0.27 26.73 8 114.23 2.251 30.14	29.52	2,4-diemthylhexane	HEX24M	321.80	0.27	40.23	8	114.23	2.251
30.14 192.51 0.27 0.00 0 0.00 0.000 30.24 2,3,-trimethylpentane PA234M 47.73 0.27 5.97 8 114.23 2.25 30.43 10kuene TOLUE 968.94 0.27 138.42 2.81 1.144 30.62 2.3-dimethylhexane HX23DM 183.67 0.27 22.96 8 114.23 2.251 30.70 100.14 0.27 120.03 9 128.26 2.223 30.88 4-methylheptane HEP2ME 1098.25 0.27 128.68 114.23 2.251 31.10 C B parafin CBPA3 125.08 0.27 15.64 8 114.23 2.251 31.36 0.27 15.86 8 114.23 2.251 31.44 2.2.55 115.84 0.27 1.91 8 112.21 2.000 31.44 2.2.55 115.84 0.27 0.38 8 112.21 2.000	29.84	C8 paraffin	C8PA2	213.85	0.27	26.73	8	114.23	2.251
30.24 2,3,trimethylpentane PA234M 47.73 0.27 5.97 6 114.23 2.251 30.43 toluene TOLUE 968.84 0.27 138.42 7 92.14 1.144 30.62 2.3-dimethylhexane HX23DM 183.67 0.27 22.06 8 114.23 2.251 30.70	30.14			192.51	0.27	0.00	0	0.00	0.000
30.43 Ioluene TOLUE 968.94 0.27 138.42 7 92.14 1.144 30.62 2.3-dimethylhexane HX23DM 183.67 0.27 22.96 8 114.23 2.251 30.70 100.14 0.27 0.00 0 0.00 <td< td=""><td>30.24</td><td>2.3trimethylpentane</td><td>PA234M</td><td>47.73</td><td>0.27</td><td>5.97</td><td>8</td><td>114.23</td><td>2.251</td></td<>	30.24	2.3trimethylpentane	PA234M	47.73	0.27	5.97	8	114.23	2.251
30.62 2.3-dimethylhexane HX23DM 183.67 0.27 22.96 8 114.23 2.251 30.70 100.14 0.27 0.00 0 0.00 0.000 30.81 2-methylheptane HEP2ME 1098.25 0.27 132.03 9 128.26 2.223 30.88 4-methylheptane HEP2ME 331.69 0.27 156.4 8 114.23 2.251 31.12 methylheptane HEP3ME 972.48 0.27 121.66 8 114.23 2.251 31.36 0.27 13.68 0.27 13.81 2.27 1.91 8 12.23 2.211 31.36 0cotene-1 OCT1E 15.27 0.27 1.91 8 112.21 2.000 31.74 1.1-dimethylcyclohexane CHX11M 270.42 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 0.000 0.000 0.00	30.43	toluene	TOLUE	968.94	0.27	138.42	7	92.14	1.144
30.70 100.14 0.27 0.00 0 0.00 30.81 2-methylheptane HEP2ME 1098.25 0.27 122.03 9 128.26 2.223 30.88 4-methylheptane HEP3ME 31.66 0.27 15.64 8 114.23 2.251 31.30 C8 paraffin C8PA3 125.08 0.27 15.64 8 114.23 2.251 31.36 DC7 35.38 9 128.26 2.223 31.56 octene-1 OCT1E 15.27 0.27 1.91 8 112.21 2.000 31.74 1.1-dimethylcyclohexane CHX11M 27.04 0.27 3.80 8 112.21 2.000 31.89 262.09 0.27 0.00 0.00 0.00 0.00 32.02 noctane N_OCT 3082.39 0.27 385.30 8 114.23 2.251 32.31 99.22 0.27 0.00 0.00 0.00 0.00	30.62	2.3-dimethylhexane	HX23DM	183.67	0.27	22.96	8	114.23	2.251
30.81 2-methylheptane HEP2ME 1098.25 0.27 122.03 9 128.26 2.223 31.00 C8 paraffin C8PA3 125.06 0.27 15.64 8 114.23 2.251 31.10 3-methylheptane HEP3ME 972.44 0.27 15.64 8 114.23 2.251 31.36 788.79 0.27 0.00 0 0.00 0.00 0 0.00 <td>30.70</td> <td></td> <td></td> <td>100.14</td> <td>0.27</td> <td>0.00</td> <td>Ō</td> <td>0.00</td> <td>0.000</td>	30.70			100.14	0.27	0.00	Ō	0.00	0.000
30.88 4-methylneptane HEP4ME 331.69 0.27 36.85 9 128.26 2.223 31.00 C8 paraffin C8PA3 125.08 0.27 15.64 8 114.23 2.251 31.12 3-methylheptane HEP3ME 972.48 0.27 12.156 8 114.23 2.251 31.36 0.27 0.00 0 0.00 0.000 <t< td=""><td>30.81</td><td>2-methylheptane</td><td>HEP2ME</td><td>1098.25</td><td>0.27</td><td>122.03</td><td>9</td><td>128.26</td><td>2.223</td></t<>	30.81	2-methylheptane	HEP2ME	1098.25	0.27	122.03	9	128.26	2.223
31.00 C8 paraffin C8PA3 125.08 0.27 15.64 8 114.23 2.251 31.12 3-methylheptane HEPSME 972.48 0.27 121.56 8 114.23 2.251 31.36 788.79 0.27 0.00 0 0.00 0.000 0.000 31.44 2.2.5-trimethylhexane HEX225 318.38 0.27 33.08 8 112.21 2.000 31.84 121.07 0.27 1.91 8 112.21 2.000 31.89 262.09 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 0.000 32.12 n-octane N_OCT 3082.39 0.27 0.00 0 0.00 0.00 0.000 32.42 2.027 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <	30.88	4-methylheptane	HEP4ME	331.69	0.27	36.85	9	128.26	2.223
31.12 3-methylheptane HEP3ME 972.48 0.27 121.56 8 114.23 2.251 31.36 788.79 0.27 0.00 0 0.00 0.000 31.44 2,2,5-trimethylhexane HEX225 318.38 0.27 1.91 8 112.21 2.000 31.74 1,1-dimethylcyclohexane CHX11M 270.42 0.27 33.80 8 112.21 2.000 31.84 121.07 0.27 0.00 0 0.00 0.000 0.000 31.89 262.09 0.27 0.00 0 0.00 0.000 0.000 32.20 0.27 0.00 0 0.00 0.000 <t< td=""><td>31.00</td><td>C8 paraffin</td><td>C8PA3</td><td>125.08</td><td>0.27</td><td>15.64</td><td>8</td><td>114.23</td><td>2.251</td></t<>	31.00	C8 paraffin	C8PA3	125.08	0.27	15.64	8	114.23	2.251
31.36 788.79 0.27 0.00 0 0.00 31.36 027 35.38 9 128.26 2.223 31.56 octene-1 0CT1E 15.27 0.27 1.91 8 112.21 2.000 31.74 1,1-dimethylcyclohexane CHX11M 270.42 0.27 3.380 8 112.21 2.000 31.84 121.07 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 32.01 n-octane N_OCT 3082.39 0.27 385.30 8 114.23 2.251 32.31 99.22 0.27 0.00 0 0.00 0.000 0.000 32.42 264.10 0.27 0.00 0 0.00 0.000 0.000 32.68 2.3.5-trimethylhexane HEX235 49.60 0.27 0.00 0 0.00 0.000 32.61 4.4-dimethylheptane HEP24D 95.71 0.27 0.83 9 128.26 2.223	31.12	3-methylheptane	HEP3ME	972.48	0.27	121.56	8	114.23	2.251
31.44 2,2,5-trimethylhexane HEX225 318.38 0.27 35.38 9 128.26 2.223 31.56 octene-1 OCT1E 15.27 0.27 1.91 8 112.21 2.000 31.74 1,1-dimethylcyclohexane CHX11M 270.42 0.27 33.80 8 112.21 2.000 31.84 121.07 0.27 0.00 0 0.00 0.000 0.000 31.89 262.09 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 32.31 99.22 0.27 0.00 0 0.00 0.000 32.42 264.10 0.27 0.00 0 0.00 0.000 32.68 83.98 0.27 0.00 0 0.00 0.00 32.64 2.35-trimethylheptane HEX235 49.60 0.27 5.51 9 128.26 2.223 33.19 2.4-dimethylheptane HEP24D 95.71 0.27 0.00 0 0.00	31.36			788.79	0.27	0.00	0	0.00	0.000
31.56 Octrie 15.27 0.27 1.91 8 112.21 2.000 31.74 1,1-dimethylcyclohexane CHX11M 270.42 0.27 33.80 8 112.21 2.000 31.84 121.07 0.27 0.00 0 0.00 0.000 31.89 262.09 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 32.31 99.22 0.27 0.00 0 0.00 0.000 32.42 264.10 0.27 0.00 0 0.00 0.000 32.68 2.70 0.27 0.00 0 0.00 0.000 32.64 2.70 0.27 0.00 0 0.00 0.000 32.68 2.3.5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 33.05 4.4-dimethylheptane HEP24D 95.37 0.27 10.	31.44	2.2.5-trimethylhexane	HEX225	318.38	0.27	35.38	9	128.26	2.223
31.74 1.1-dimethylcyclohexane CHX11M 270.42 0.27 33.80 8 112.21 2.000 31.84 121.07 0.27 0.00 0 0.00 0.000 31.89 262.09 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 32.12 n-octane N_OCT 3082.39 0.27 385.30 8 114.23 2.251 32.31 99.22 0.27 0.00 0 0.00 0.000 32.42 264.10 0.27 0.00 0 0.00 0.000 32.54 2.70 0.27 0.00 0 0.00 0.000 32.68 4.4-dimethylheptane HEX235 49.60 0.27 5.51 9 128.26 2.223 33.05 4.4-dimethylheptane HEP44D 253.87 0.27 0.00 0 0.00 0.00 33.53 2.5-dimethylheptane<	31.56	octene-1	OCT1E	15.27	0.27	1.91	8	112.21	2.000
31.84 121.07 0.27 0.00 0 0.00 31.84 262.09 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 32.12 n-octane N_OCT 3082.39 0.27 385.30 8 114.23 2.251 32.31 99.22 0.27 0.00 0 0.00 0.000 32.42 264.10 0.27 0.00 0 0.00 0.000 32.68 2.3,5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 33.91 2.4-dimethylheptane HEP24D 95.71 0.27 10.63 9 128.26 2.223 33.19 2.6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 2.6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223	31 74	1 1-dimethylcyclohexane	CHX11M	270.42	0.27	33.80	8	112.21	2.000
31.89 262.09 0.27 0.00 0 0.00 0.000 32.02 52.32 0.27 0.00 0 0.00 0.000 32.12 n-octane N_OCT 3082.39 0.27 385.30 8 114.23 2.251 32.31 99.22 0.27 0.00 0 0.00 0.000 32.42 264.10 0.27 0.00 0 0.00 0.000 32.68 83.98 0.27 0.00 0 0.00 0.000 32.61 2.3.5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 33.05 4.4-dimethylheptane HEP44D 25.87 0.27 10.63 9 128.26 2.223 33.19 2.6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 353.02 0.27 10.00 0.00 0.00 0.00 33.92 138.33	31.84			121.07	0.27	0.00	0	0.00	0.000
32.02 52.32 0.27 0.00 0 0.00 32.12 n-octane N_OCT 3082.39 0.27 385.30 8 114.23 2.251 32.31 99.22 0.27 0.00 0 0.00 0.000 32.42 264.10 0.27 0.00 0 0.00 0.000 32.54 2.70 0.27 0.00 0 0.00 0.000 32.68 83.98 0.27 0.00 0 0.00 0.000 32.62 2,3,5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 33.05 4,4-dimethylheptane HEP24D 95.71 0.27 10.63 9 128.26 2.223 33.19 29.30 0.27 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	31.89			262.09	0.27	0.00	0	0.00	0.000
32.12 n-octane N_OCT 3082.39 0.27 385.30 8 114.23 2.251 32.31 99.22 0.27 0.00 0 0.00 0.000 32.42 264.10 0.27 0.00 0 0.00 0.000 32.54 2.70 0.27 0.00 0 0.00 0.000 32.68 2.3,5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 32.91 2,4-dimethylheptane HEP4D 95.71 0.27 10.63 9 128.26 2.223 33.19 29.30 0.27 78.37 9 128.26 2.223 33.19 29.30 0.27 0.00 0 0.00 0.000 33.52 2,5-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.31 3.3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 </td <td>32.02</td> <td></td> <td></td> <td>52.32</td> <td>0.27</td> <td>0.00</td> <td>0</td> <td>0.00</td> <td>0.000</td>	32.02			52.32	0.27	0.00	0	0.00	0.000
32.31 99.22 0.27 0.00 0 0.00 32.42 264.10 0.27 0.00 0 0.00 0.000 32.54 2.70 0.27 0.00 0 0.00 0.000 32.68 2.3,5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.233 32.91 2,4-dimethylheptane HEP24D 95.71 0.27 10.63 9 128.26 2.223 33.05 4,4-dimethylheptane HEP44D 253.87 0.27 28.21 9 128.26 2.223 33.19 29.30 0.27 0.00 0 0.00 0.000 33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 33.53 2,5-dimethylheptane HEP25D 153.40 0.27 170.04 9 128.26 2.223 33.341 0.27 119.37 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37	32 12	n-octane	N OCT	3082.39	0.27	385.30	8	114.23	2.251
32.42 264.10 0.27 0.00 0 0.00 32.54 2.70 0.27 0.00 0 0.00 0.000 32.68 83.98 0.27 0.00 0 0.00 0.000 32.61 83.98 0.27 0.00 0 0.00 0.000 32.62 2,3,5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 32.91 2,4-dimethylheptane HEP44D 253.87 0.27 28.21 9 128.26 2.223 33.19 29.30 0.27 0.00 0 0.00 0.000 33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 35.3 2,5-dimethylheptane HEP25D 1530.40 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 </td <td>32.31</td> <td></td> <td></td> <td>99.22</td> <td>0.27</td> <td>0.00</td> <td>0</td> <td>0.00</td> <td>0.000</td>	32.31			99.22	0.27	0.00	0	0.00	0.000
32.54 2.70 0.27 0.00 0 0.00 32.68 83.98 0.27 0.00 0 0.00 32.82 2,3,5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 32.91 2,4-dimethylheptane HEP24D 95.71 0.27 10.63 9 128.26 2.223 33.05 4,4-dimethylheptane HEP44D 253.87 0.27 28.21 9 128.26 2.223 33.19 2,6-dimethylheptane HEP44D 29.30 0.27 0.00 0 0.00 0.000 33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 353.02 0.27 10.00 0 0.00 0.000 33.53 2,5-dimethylheptane HEP25D 1530.40 0.27 119.37 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin	32.42			264.10	0.27	0.00	0	0.00	0.000
32.68 83.98 0.27 0.00 0 0.00 32.68 83.98 0.27 0.00 0 0.00 0.000 32.82 2,3,5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 32.91 2,4-dimethylheptane HEP24D 95.71 0.27 10.63 9 128.26 2.223 33.05 4,4-dimethylheptane HEP44D 253.87 0.27 28.21 9 128.26 2.223 33.19 29.30 0.27 0.00 0 0.00 0.000 33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 33.53 2,5-dimethylheptane HEP25D 1530.40 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 34.02	32 54			2.70	0.27	0.00	0	0.00	0.000
32.82 2,3,5-trimethylhexane HEX235 49.60 0.27 5.51 9 128.26 2.223 32.91 2,4-dimethylheptane HEP24D 95.71 0.27 10.63 9 128.26 2.223 33.05 4,4-dimethylheptane HEP44D 253.87 0.27 28.21 9 128.26 2.223 33.19 29.30 0.27 0.00 0 0.00 0.000 33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 353.02 0.27 0.00 0 0.00 0.000 33.53 2,5-dimethylheptane HEP25D 1530.40 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 34.40	32.68			83.98	0.27	0.00	0	0.00	0.000
32.91 2,4-dimethylheptane HEP24D 95.71 0.27 10.63 9 128.26 2.223 33.05 4,4-dimethylheptane HEP44D 253.87 0.27 28.21 9 128.26 2.223 33.19 29.30 0.27 0.00 0 0.00 0.000 33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 353.02 0.27 0.00 0 0.00 0.000 33.53 2,5-dimethylheptane HEP25D 1530.40 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C90LE1 274.96 0.27 30.55 9 126.24 2.001 33.92 138.33 0.27 0.00 0 0.00 0.000 0.000 34.02 82.99 0.27 134.41 8 106.16 1.250 34.31 C9 olefin	32.82	2.3.5-trimethylbexane	HEX235	49.60	0.27	5.51	9	128.26	2.223
33.05 4.4-dimethylheptane HEP4D 253.87 0.27 28.21 9 128.26 2.223 33.19 29.30 0.27 0.00 0 0.00 0.000 33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 353.02 0.27 0.00 0 0.00 0.000 33.53 2,5-dimethylheptane HEP25D 1530.40 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 33.92 138.33 0.27 0.00 0 0.00 0.000 34.02 82.99 0.27 0.00 0 0.00 0.000 34.31 C9 olefin C9OLE3 1075.26 0.27 134.41 8	32.02	2.4-dimethylhentane	HEP24D	95 71	0.27	10.63	9	128.26	2.223
33.19 29.30 0.27 0.00 0 0.00 33.19 29.30 0.27 0.00 0 0.00 0.000 33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 353.02 0.27 0.00 0 0.00 0.000 33.53 2,5-dimethylheptane HEP25D 1530.40 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 33.92 138.33 0.27 0.00 0 0.00 0.000 34.02 ETBZ 1075.26 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 </td <td>33.05</td> <td>A A-dimethylheptane</td> <td>HEP44D</td> <td>253.87</td> <td>0.27</td> <td>28.21</td> <td>9</td> <td>128.26</td> <td>2.223</td>	33.05	A A-dimethylheptane	HEP44D	253.87	0.27	28.21	9	128.26	2.223
33.28 2,6-dimethylheptane HEP26D 705.34 0.27 78.37 9 128.26 2.223 33.41 353.02 0.27 0.00 0 0.00 0.000 33.53 2,5-dimethylheptane HEP25D 1530.40 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 33.92 138.33 0.27 0.00 0 0.00 0.000 34.02 82.99 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.72 <td>33.10</td> <td>4,4 dimentymoptane</td> <td></td> <td>29.30</td> <td>0.27</td> <td>0.00</td> <td>Ō</td> <td>0.00</td> <td>0.000</td>	33.10	4,4 dimentymoptane		29.30	0.27	0.00	Ō	0.00	0.000
33.41 35.02 0.27 0.00 0 0.00 33.41 35.02 0.27 0.00 0 0.00 33.41 35.02 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 33.92 138.33 0.27 0.00 0 0.00 0.000 34.02 82.99 0.27 0.00 0 0.00 0.000 34.14 ethylbenzene ETBZ 1075.26 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 </td <td>33.28</td> <td>2.6-dimethylheptane</td> <td>HEP26D</td> <td>705.34</td> <td>0.27</td> <td>78.37</td> <td>9</td> <td>128.26</td> <td>2.223</td>	33.28	2.6-dimethylheptane	HEP26D	705.34	0.27	78.37	9	128.26	2.223
33.53 2,5-dimethylheptane HEP25D 1530.40 0.27 170.04 9 128.26 2.223 33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 33.92 138.33 0.27 0.00 0 0.00 0.000 34.02 82.99 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.31 C9 olefin C9OLE3 1075.26 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.72 60.53 0.27 180.10 9 128.26 2.223 35.00 C9	33 41	Els amortynoptuno		353.02	0.27	0.00	t õ	0.00	0.000
33.73 3,3-dimethylheptane HEP33D 1074.32 0.27 119.37 9 128.26 2.223 33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 33.92 138.33 0.27 0.00 0 0.00 0.000 34.02 82.99 0.27 119.36 9 126.24 2.001 34.14 ethylbenzene ETBZ 1075.26 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.31 C9 olefin C9OLE3 1075.26 0.27 134.41 8 106.16 1.250 34.34 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 34.72 60.53 0.27 0.00 0 0.000 0.000 34.84 3-methylo	22 52	2.5-dimethylhentane	HEP25D	1530 40	0.27	170.04	9	128.26	2.223
33.84 C9 olefin C9OLE1 274.96 0.27 30.55 9 126.24 2.001 33.92 138.33 0.27 0.00 0 0.00 0.000 34.02 82.99 0.27 134.41 8 106.16 1.250 34.14 ethylbenzene ETBZ 1075.26 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 34.72 60.53 0.27 0.00 0 0.000 0.000 34.84 3-methyloctane OCT3ME 1487.02 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223 35.00 C9 paraffin <td>33 72</td> <td>3.3-dimethylhentane</td> <td>HEP33D</td> <td>1074 32</td> <td>0.27</td> <td>119.37</td> <td>9</td> <td>128.26</td> <td>2.223</td>	33 72	3.3-dimethylhentane	HEP33D	1074 32	0.27	119.37	9	128.26	2.223
33.92 138.33 0.27 0.00 0 0.00 34.02 82.99 0.27 0.00 0 0.00 0.000 34.14 ethylbenzene ETBZ 1075.26 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 34.72 60.53 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223	33.84	C9 olefin	C9OLE1	274.96	0.27	30.55	9	126.24	2.001
34.02 82.99 0.27 0.00 0 0.00 34.14 ethylbenzene ETBZ 1075.26 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 34.72 60.53 0.27 0.00 0 0.00 0.000 34.84 3-methyloctane OCT3ME 1487.02 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223	33.02			138.33	0.27	0.00	Ō	0.00	0.000
34.14 ethylbenzene ETBZ 1075.26 0.27 134.41 8 106.16 1.250 34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 34.72 60.53 0.27 165.22 9 128.26 2.223 34.84 3-methyloctane OCT3ME 1487.02 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223	34.02		ļ	82.99	0.27	0.00	0	0.00	0.000
34.31 C9 olefin C9OLE3 1074.21 0.27 119.36 9 126.24 2.001 34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 34.72 60.53 0.27 0.00 0 0.00 0.000 34.84 3-methyloctane OCT3ME 1487.02 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223	34 14	ethylbenzene	FTBZ	1075 26	0.27	134.41	8	106.16	1,250
34.44 m- & p-xylene MP_XYL 2827.30 0.27 353.41 8 106.16 1.250 34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 34.72 60.53 0.27 0.00 0 0.00 0.000 34.84 3-methyloctane OCT3ME 1487.02 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223	24 21	C9 olefin	C901 F3	1074 21	0.27	119.36	9	126.24	2.001
34.56 2-methyloctane OCT2ME 1620.88 0.27 180.10 9 128.26 2.223 34.72 60.53 0.27 0.00 0 0.00 0.000 34.84 3-methyloctane OCT3ME 1487.02 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223	24.44	m. & n.yvlene	MP XYI	2827 30	0.27	353 41	8	106.16	1.250
34.72 60.53 0.27 0.00 0 0.00 0.000 34.84 3-methyloctane OCT3ME 1487.02 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223	24 56	2-methyloctape		1620 88	0.27	180.10	9	128.26	2.223
34.84 3-methyloctane OCT3ME 1487.02 0.27 165.22 9 128.26 2.223 35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223	24.00			60.53	0.27	0.00	i õ	0.00	0.000
35.00 C9 paraffin C9PAR1 152.06 0.27 16.90 9 128.26 2.223 05.02	24.72	2-methyloctane	OCTAME	1487.02	0.27	165.22	ă	128.26	2,223
05.00 05 paramin 05/ART 152.00 0.27 10.50 0 120.20 2.220	34.04		COPARI	152 04	0.27	16 00	a	128 26	2 223
	35.00	ot vana i hontanal	STYP	22.00	0.27	2 80	<u>я</u>	104 14	1 000

SAM_RT	NEWNAME	MNEMÓNIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
35.18			353.17	0.27	0.00	0	0.00	0.000
35.32	o-xylene	O_XYL	1255.70	0.27	156.96	8	106.17	1.251
35.44			844.47	0.27	0.00	0	0.00	0.000
35.56	nonene-1	NONE1	672.88	0.27	74.76	9	126.24	2.001
35.66	C9 paraffin 2	C9PAR2	414.73	0.27	46.08	9	128.26	2.223
35.80	n-nonane	N_NON	4847.28	0.27	538.59	9	128.26	2.223
36.06	C9 olefin	C9OLE4	172.82	0.27	19.20	9	126.24	2.001
36.22			113.26	0.27	0.00	0	0.00	0.000
36.29			830.86	0.27	0.00	0	0.00	0.000
36.48	isopropylbenzene	IPRBZ	799.49	0.27	88.83	9	120.20	1.335
36.65			117.28	0.27	0.00	0	0.00	0.000
36.75	C9 paraffin 3	C9PA3	1266.09	0.27	140.68	9	128.26	2.223
36.87			148.59	0.27	0.00	0	0.00	0.000
37.06	isopropylcyclohexane	IPCYHX	2815.25	0.27	312.81	9	126.24	2.001
37.21	2,6-dimethyloctane	OCT26D	454.67	0.27	45.47	10	142.29	2.201
37.27			362.06	0.27				
37.37	3,6-dimethyloctane	OCT36M	964.07	0.27	96.41	10	142.29	2.201
37.50	n-propylbenzene	N_PRBZ	1041.17	0.27	115.69	9	120.20	1.335
37.61			185.02	0.27	0.00	0	0.00	0.000
37.73	m-ethyltoluene	M_ETOL	1533.00	0.27	170.33	9	120.20	1.335
37.80	p-ethyltoluene	P_ETOL	1259.20	0.27	139.91	9	120.20	1.335
37.90	<u> </u>		324.16	0.27	0.00	0	0.00	0.000
37.96	1,3,5-trimethylbenzene	BZ135M	1762.17	0.27	195.80	9	120.20	1.335
38.03			1116.91	0.27	0.00	0	0.00	0.000
38.18	C10 paraffin	C10P A	1110.01	0.27	111.00	10	142.29	2.201
38.27			1088.17	0.27	0.00	0	0.00	0.000
38.38	o-ethvitoluene	O ETOL	1035.40	0.27	115.04	9	120.20	1.335
38.49		+	142.36	0.27	0.00	0	0.00	0.000
38.58			532.91	0.27	0.00	0	0.00	0.000
38.69		1	593.53	0.27	0.00	0	0.00	0.000
38.88	1 2 4-trimethylbenzene	BZ124M	3441.00	0.27	382.33	9	120.20	1.335
39.01			556.80	0.27	0.00	0	0.00	0.000
39.09	······································	+	397.22	0.27	0.00	0	0.00	0.000
39.18	n-decane	N DEC	5478.77	0.27	547.88	10	142.29	2.201
39.30	C10 aromatic	C10AB1	212.29	0.27	21.23	10	134.22	1.401
39.39	isobutylbenzene	I BUBZ	551.61	0.27	55.16	10	134.22	1.401
39.48	sec-butvlbenzene	S BUBZ	711.56	0.27	71.16	10	134.22	1.401
39.72	C10 aromatic 7	C10AR7	795.03	0.27	79.50	10	134.22	1.401
39.85	1.2.3-trimethylbenzene	BZ123M	1988.94	0.27	220.99	9	120.20	1.335
39.98	C10 paraffin	C10P C	1550.37	0.27	155.04	10	142.29	2.201
40 17	limonene	LIMON	590.68	0.27	59.07	10	136.24	1.601
40.36	indan	INDAN	897.09	0.27	99.68	9	118.17	1.111
40.50	indene	INDENE	1419.06	0.27	157.67	9	116.15	0.888
40.61	diethylbenzene	DETBZ1	438.60	0.27	43.86	10	134.22	1.401
40.01	C10 aromatic	C10AR2	894.22	0.27	89.42	10	134.22	1.401
40.87	1.4-diethylbenzene	DETBZ2	1374.49	0.27	137.45	10	134.22	1.401
41 03	1 2-diethylbenzene	DETBZ3	789.13	0.27	78.91	10	134.22	1.401
41 12	ije diotrijiborizorio		790.59	0.27	0.00	0	0.00	0.000
41.13	2-propyltoluene	TOL2PR	1088.48	0.27	108.85	10	134.22	1.401
A1 25			170.54	0.27	0.00	0	0.00	0.000
A1 /A		-+	778.00	0.27	0.00	0	0.00	0.000
A1 52	C10 aromatic	C10AB4	549 50	0.27	54.95	10	134.22	1.401
41.00	C10 aromatic	C10AR5	487 48	0.27	48.75	10	134.22	1.401
41.00	isopropyltolyana		802 76	0.27	80.28	10	134.22	1.401
41.78	Isopiopylloluene	TENIOL	002.70	0.21	00.20			

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
41.94			376.73	0.27	0.00	0	0.00	0.000
42.09			559.40	0.27	0.00	0	0.00	0.000
42.16			296.05	0.27	0.00	0	0.00	0.000
42.29	n-undecane	N_UNDE	2506.07	0.27	227.82	11	156.30	2.182
42.49	C10 aromatic	C10AR6	369.10	0.27	36.91	10	134.22	1.401
42.55			244.10	0.27	0.00	0	0.00	0.000
42.60			359.39	0.27	0.00	0	0.00	0.000
42.73	C11 paraffin	C11P_A	75.99	0.27	6.91	11	156.32	2.183
42.84	1,2,4,5-tetramethylbenzene	BZ1245	411.38	0.27	41.14	10	134.22	1.401
42.94	1,2,3,5-tetramethylbenzene	BZ1235	343.32	0.27	34.33	10	134.22	1.401
43.06			194.21	0.27	0.00	0	0.00	0.000
43.19			172.32	0.27	0.00	0	0.00	0.000
43.25			196.74	0.27	0.00	0	0.00	0.000
43.33			222.04	0.27	0.00	0	0.00	0.000
43.53	C11 paraffin	C11P_B	239.73	0.27	21.79	11	156.32	2.183
43.65			302.83	0.27	0.00	0	0.00	0.000
43.77			296.36	0.27	0.00	0	0.00	0.000
43.96	1,2,3,4-trimethylbenzene	BZ1234	493.96	0.27	49.40	10	134.22	1.401
44.08			180.19	0.27	0.00	0	0.00	0.000
44.20			145.15	0.27	0.00	0	0.00	0.000
44.28			239.51	0.27	0.00	0	0.00	0.000
44.41			156.99	0.27	0.00	0	0.00	0.000
44.57	C11 aromatic	C11AR3	55.51	0.27	5.05	11	148.22	1.453
44.76			42.82	0.27	0.00	0	0.00	0.000
44.93	naphthalene	NAPHTH	185.35	0.27	18.54	10	128.16	0.800
45.06			72.94	0.27	0.00	0	0.00	0.000
45.18	n-dodecane	N_DODE	279.17	0.27	23.26	12	170.34	2.168
45.29			87.18	0.27	0.00	0	0.00	0.000
45.39			20.24	0.27	0.00	0	0.00	0.000
45.50			23.32	0.27	0.00	0	0.00	0.000
45.64			38.22	0.27	0.00	0	0.00	0.000
45.74			9.11	0.27	0.00	0	0.00	0.000
45.88			32.19	0.27	0.00	0	0.00	0.000
	Total C3		14.98	0.02%				
	Total C4		57.90	0.06%				
	Total C5		252.25	0.27%				
	Total C6	<u> </u>	620.82	0.68%				
	Total C7		4587.94	4.99%				
	Total C8	ļ	13886.07	15.10%				
	Total C9		24835.28	27.01%				
	Total C10	ļ	31647.25	34.42%				
	Total C11		13700.37	14.90%				
	Total C12		2358.21	2.56%				

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
3.03			10.69	0.23	0.00	0	0.00	0.000
3.75			1.42	0.23	0.00	0	0.00	0.000
7.03	propane	N_PROP	6.24	0.23	2.08	3	44.10	2.669
10.88	isobutane	I_BUTA	14.99	0.23	3.75	6 4	58.12	2.500
12.99	n-butane	N_BUTA	35.81	0.23	8.95	4	58.12	2.500
13.69	t-2-butene	T2BUTE	3.28	0.23	0.82	2 4	56.11	2.001
14.51	c-2-butene	C2BUTE	0.75	0.23	0.19	4	56.11	2.001
16.95			2.01	0.23	0.00	0	0.00	0.000
17.20	isopentane	IPENTA	78.59	0.23	15.72	5	72.15	2.401
17.98	1-pentene	PENTE1	37.37	0.23	7.47	5	70.13	2.000
18.30			1.06	0.23	0.00	0	0.00	0.000
18.42	2-methyl-1-butene	B1E2M	1.42	0.23	0.28	5	70.13	2.000
18.62	n-pentane	N_PENT	54.85	0.23	10.97	′ 5	72.15	2.401
19.07	t-2-pentene	T2PENE	3.83	0.23	0.77	5	70.13	2.000
19.19	•		3.24	0.23	0.00	0	0.00	0.000
19.45	c-2-pentene	C2PENE	2.89	0.23	0.58	5	70.13	2.000
19.69	2-methyl-2-butene	B2E2M	3.53	0.23	0.71	5	70.13	2.000
19.83			2.22	0.23	0.00	0	0.00	0.000
20.17			3.02	0.23	0.00	0	0.00	0.000
20.40	2,2-dimethylbutane	BU22DM	9.14	0.23	1.52	: 6	86.17	2.333
20.73			3.04	0.23	0.00	0	0.00	0.000
20.88			1.72	0.23	0.00	0	0.00	0.000
20.99			3.10	0.23	0.00	0 0	0.00	0.000
21.22	cyclopentene	CPENTE	4.01	0.23	0.80	5	68.11	1.599
21.45	4-methyl-1-pentene	P1E4ME	3.27	0.23	0.55	6	84.16	2.001
21.74		CPENTA	13.83	0.23	2.77	5	70.13	2.000
21.89	2.3-dimethylbutane	BU23DM	20.66	0.23	3.44	6	86.17	2.333
22.13	2-methylpentane	PENA2M	96.56	0.23	16.09	6	86.17	2.333
22.52			2.12	0.23	0.00	0	0.00	0.000
22 70	2.2-dimethylpentane	PEN22M	1.18	0.23	0.17	7	100.20	2.286
22 79	3-methylpentane	PENA3M	70.88	0.23	11.81	6	86.17	2.333
23.06	1-hexene	HEX1E	1.97	0.23	0.33	6 16	84.16	2.001
23.62	n-hexane	N HEX	168.24	0.23	28.04	6	86.17	2.333
23.86	t-2-hexene	T2HEXE	1.82	0.23	0.30	6 (84.16	2.001
24.50	trans-3-methyl-2-pentene	P2E3MT	2.49	0.23	0.42	6	84.16	2.001
24.73			7.81	0.23	0.00	0	0.00	0.000
24.82	methylcyclopentane	MCYPNA	136.21	0.23	22.70	6 (84.16	2.001
25.01	2.4-dimethylpentane	PEN24M	17.84	0.23	2.55	5 7	100.20	2.286
25.25			3.80	0.23	0.00	0	0.00	0.000
25.57			1.63	0.23	0.00		0.00	0.000
25.89	benzene	BENZE	66.86	0.23	11.14	6	78.11	1.000
26.14	3.3-dimethylpentane	PEN33M	10.92	0.23	1.56	6 7	100.20	2.286
26.32	cvclohexane	CYHEXA	202.95	0.23	33.83	3 6	84.16	2.001
26.68	2-methylhexane	HEXA2M	219.63	0.23	31.38	3 7	98.19	2.001
26 77	2.3-dimethylpentane	PEN23M	114.45	0.23	16.35	5 7	100.20	2.286
26.01	cvclohexene	CYHEXE	38.76	0.23	6.46	3 6	82.15	1.668
27.06	3-methylhexane + pentanal	HEXA3M	333.53	0.23	47.65	5 7	100.20	2.286
27.00	1 3-dimethylcyclopentane	CPA13M	102.94	0.23	14.7	1 7	98.19	2.001
27 40	3-ethylpentane	PASET	138.28	0.23	17.29	8	114.23	2.251
27.61	2 2 4-trimethylpentane	PA224M	198.85	0.23	24.80	8 8	114.23	2.251
28.08	n-heptane	N HEPT	978.10	0.23	139.73	3 7	100.20	2.286
29.04	methylcyclohexane	MECYHX	1198.63	0.23	171.23	3 7	98.19	2.001
20.13	C8 paraffin	C8PA1	98.21	0.23	12.20	3 8	114.23	2.251
29 42	2.5-diemthylhexane	HEX25M	99.94	0.23	12.49	8	114.23	2.251

SAM_RT NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
29.51 2,4-diemthylhexane	HEX24M	309.30	0.23	38.66	8	114.23	2.251
29.83 C8 paraffin	C8PA2	206.71	0.23	25.84	8	114.23	2.251
30.13		183.48	0.23	0.00	0	0.00	0.000
30.22 2,3,-trimethylpentane	PA234M	48.24	0.23	6.03	8	114.23	2.251
30.42 toluene	TOLUE	931.99	0.23	133.14	7	92.14	1.144
30.61 2,3-dimethylhexane	HX23DM	176.05	0.23	22.01	8	114.23	2.251
30.69		96.20	0.23	0.00	0	0.00	0.000
30.79 2-methylheptane	HEP2ME	1040.98	0.23	115.66	9	128.26	2.223
30.86 4-methylheptane	HEP4ME	318.36	0.23	35.37	9	128.26	2.223
30.99 C8 paraffin	C8PA3	120.61	0.23	15.08	8	114.23	2.251
31.11 3-methylheptane	HEP3ME	927.93	0.23	115.99	8	114.23	2.251
31.35		755.61	0.23	0.00	0	0.00	0.000
31.43 2,2,5-trimethylhexane	HEX225	304.46	0.23	33.83	9	128.26	2.223
31.55 octene-1	OCT1E	17.07	0.23	2.13	8	112.21	2.000
31.73 1,1-dimethylcyclohexane	CHX11M	261.12	0.23	32.64	8	112.21	2.000
31.82		115.37	0.23	0.00	0	0.00	0.000
31.88		252.56	0.23	0.00	0	0.00	0.000
32.01		50.84	0.23	0.00	0	0.00	0.000
32.10 n-octane	N_OCT	2963.20	0.23	370.40	8	114.23	2.251
32.29		96.26	0.23	0.00	0	0.00	0.000
32.41		254.65	0.23	0.00	0	0.00	0.000
32.54		3.46	0.23	0.00	0	0.00	0.000
32.67		81.43	0.23	0.00	0	0.00	0.000
32.81 2.3.5-trimethylhexane	HEX235	47.46	0.23	5.27	9	128.26	2.223
32.90 2.4-dimethylheptane	HEP24D	92.87	0.23	10.32	9	128.26	2.223
33.04 4.4-dimethylheptane	HEP44D	245.27	0.23	27.25	9	128.26	2.223
33.18		28.46	0.23	0.00	0	0.00	0.000
33.26 2.6-dimethylheptane	HEP26D	682.46	0.23	75.83	9	128.26	2.223
33.40		342.78	0.23	0.00	0	0.00	0.000
33.52 2.5-dimethylheptane	HEP25D	1490.26	0.23	165.58	9	128.26	2.223
33.72 3.3-dimethylheptane	HEP33D	1048.20	0.23	116.47	9	128.26	2.223
33 83 C9 olefin	C9OLE1	269.22	0.23	29.91	9	126.24	2.001
33.91		134.70	0.23	0.00	0	0.00	0.000
34.01		79.75	0.23	0.00	0	0.00	0.000
34 13 ethylbenzene	ETBZ	1050.96	0.23	131.37	8	106.16	1.250
34.30 C9 olefin	C9OLE3	1056.95	0.23	117.44	9	126.24	2.001
34.43 m- & p-xviene	MP XYL	2786.05	0.23	348.26	8	106.16	1.250
34.55 2-methyloctane	OCT2ME	1612.16	0.23	179.13	9	128.26	2.223
34.70		59.52	0.23	0.00	0	0.00	0.000
34 82 3-methyloctane	OCT3ME	1477.16	0.23	164.13	9	128.26	2.223
34.99 C9 paraffin	C9PAR1	149.79	0.23	16.64	9	128.26	2.223
35.07 styrene + heptanal	STYR	22.47	0.23	2.81	8	104.14	1.000
35.17	1	351.40	0.23	0.00	0	0.00	0.000
35.31 o-xvlene	O XYL	1252.96	0.23	156.62	8	106.17	1.251
35.43		843.60	0.23	0.00	0	0.00	0.000
35.55 nonene-1	NONE1	682.84	0.23	75.87	' 9	126.24	2.001
35.65 C9 paraffin	C9PAR2	416.44	0.23	46.27	9	128.26	2.223
35.78 n-nonane	N_NON	4968.67	0.23	552.07	9	128.26	2.223
36.04 C9 olefin	C9OLE4	175.24	0.23	19.47	9	126.24	2.001
36.21	1	116.63	0.23	0.00	0 0	0.00	0.000
36.28	+	845.98	0.23	0.00	0 0	0.00	0.000
36.46 isopropylbenzene	IPRBZ	814.34	0.23	90.48	3 9	120.20	1.335
36.64		119.57	0.23	0.00) 0	0.00	0.000
36.74 C9 paraffin 3	C9PA3	1302.99	0.23	144.78	8 9	128.26	2.223

Canister: DRI-F Flight 1, 7/15/97 14,000'

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
36.85			154.11	0.23	0.00	0	0.00	0.000
37.04	isopropylcyclohexane	IPCYHX	2931.13	0.23	325.68	9	126.24	2.001
37.20	2,6-dimethyloctane	OCT26D	472.09	0.23	47.21	10	142.29	2.201
37.26			381.65	0.23	0.00	0	0.00	0.000
37.36	3,6-dimethyloctane	OCT36M	1010.85	0.23	101.09	10	142.29	2.201
37.49	n-propylbenzene	N_PRBZ	1086.45	0.23	120.72	9	120.20	1.335
37.60			190.06	0.23	0.00	0	0.00	0.000
37.71	m-ethyltoluene	M_ETOL	1630.83	0.23	181.20	9	120.20	1.335
37.79	p-ethyltoluene	P_ETOL	1326.14	0.23	147.35	9	120.20	1.335
37.88			353.74	0.23	0.00	0	0.00	0.000
37.95	1,3,5-trimethylbenzene	BZ135M	1893.29	0.23	210.37	9	120.20	1.335
38.02			1225.34	0.23	0.00	0	0.00	0.000
38.16	C10 paraffin	C10P_A	1190.37	0.23	119.04	10	142.29	2.201
38.26			1189.97	0.23	0.00	0	0.00	0.000
38.36	o-ethyltoluene	O_ETOL	1111.66	0.23	123.52	9	120.20	1.335
38.47			144.50	0.23	0.00	0	0.00	0.000
38.57			574.77	0.23	0.00	0	0.00	0.000
38.68			633.78	0.23				1.600
38.86	1,2,4-trimethylbenzene	BZ124M	3810.59	0.23	423.40	9	120.20	1.335
39.00			606.96	0.23	0.00	0	0.00	0.000
39.08			444.63	0.23	0.00	0	0.00	0.000
39.16	n-decane	N_DEC	6389.60	0.23	638.96	10	142.29	2.201
39.29	C10 aromatic	C10AR1	235.57	0.23	23.56	10	134.22	1.401
39.38	isobutylbenzene	I_BUBZ	607.36	0.23	60.74	10	134.22	1.401
39.47	sec-butylbenzene	S_BUBZ	785.70	0.23	78.57	10	134.22	1.401
39.71	C10 aromatic 7	C10AR7	900.32	0.23	90.03	10	134.22	1.401
39.84	1,2,3-trimethylbenzene	BZ123M	2285.86	0.23	253.98	9	120.20	1.335
39.96	C10 paraffin	C10P_C	1829.92	0.23	182.99	10	142.29	2.201
40.16	limonene	LIMON	688.53	0.23	68.85	10	136.24	1.601
40.35	indan	INDAN	1045.48	0.23	116.16	9	118.17	1.111
40.49	indene	INDENE	1704.42	0.23	189.38	9	116.15	0.888
40.60	diethylbenzene	DETBZ1	513.40	0.23	51.34	10	134.22	1.401
40.69	C10 aromatic	C10AR2	1072.85	0.23	107.29	10	134.22	1.401
40.86	1,4-diethylbenzene	DETBZ2	1673.87	0.23	167.39	10	134.22	1.401
41.02	1,2-diethylbenzene	DETBZ3	981.49	0.23	98.15	10	134.22	1.401
41.12			992.24	0.23	0.00	0	0.00	0.000
41.23	2-propyltoluene	TOL2PR	1380.97	0.23	138.10	10	134.22	1.401
41.34			213.83	0.23	0.00	0	0.00	0.000
41.44			1007.57	0.23	0.00	0	0.00	0.000
41.52	C10 aromatic	C10AR4	673.56	0.23	67.36	10	134.22	1.401
41.59	C10 aromatic	C10AR5	628.33	0.23	62.83	10	134.22	1.401
41.77	isopropyltoluene	IPRTOL	1021.58	0.23	102.16	10	134.22	1.401
41.93			468.35	0.23	0.00	0	0.00	0.000
42.08			1114.81	0.23	0.00	0	0.00	0.000
42.28	n-undecane	N_UNDE	3653.97	0.23	332.18	11	156.30	2.182
42.47	C10 aromatic	C10AR6	500.03	0.23	50.00	10	134.22	1.401
42.53			329.96	0.23	0.00	0	0.00	0.000
42.59	· · · · · · · · · · · · · · · · · · ·		492.94	0.23	0.00	0	0.00	0.000
42.73	C11 paraffin	· C11P_A	100.11	0.23	9.10	11	156.32	2.183
42.83	1,2,4,5-tetramethylbenzene	BZ1245	597.51	0.23	59.75	10	134.22	1.401
42.93	1,2,3,5-tetramethylbenzene	BZ1235	478.32	0.23	47.83	10	134.22	1.401
43.05			274.56	0.23	0.00	0	0.00	0.000
43.18			267.79	0.23	0.00	0	0.00	0.000
43.24			262.86	0.23	0.00	0	0.00	0.000

Canister: DRI-F Flight 1, 7/15/97 14,000'

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJP	PBV	C_N	MW	СТОН
43.32			333.92	0.23	0.00	0	0.00	0.000
43.52	C11 paraffin	C11P_B	353.11	0.23	32.10	11	156.32	2.183
43.64	-		467.28	0.23	0.00	0	0.00	0.000
43.76			448.64	0.23	0.00	0	0.00	0.000
43.94	1,2,3,4-trimethylbenzene	BZ1234	800.37	0.23	80.04	10	134.22	1.401
44.06			298.43	0.23	0.00	0	0.00	0.000
44.19			250.41	0.23	0.00	0	0.00	0.000
44.26			390.57	0.23	0.00	0	0.00	0.000
44.39			265.05	0.23	0.00	0	0.00	0.000
44.56	C11 aromatic	C11AR3	84.29	0.23	7.66	11	148.22	1.453
44.75			67.76	0.23	0.00	0	0.00	0.000
44.91	naphthalene	NAPHTH	353.44	0.23	35.34	10	128.16	0.800
45.05			131.17	0.23	0.00	0	0.00	0.000
45.17	n-dodecane	N_DODE	587.10	0.23	48.93	12	170.34	2.168
45.28			153.01	0.23	0.00	0	0.00	0.000
45.38			34.79	0.23	0.00	0	0.00	0.000
45.48			45.53	0.23	0.00	0	0.00	0.000
45.54			27.29	0.23	0.00	0	0.00	0.000
45.63			78.12	0.23	0.00	0	0.00	0.000
45.73			18.37	0.23	0.00	0	0.00	0.000
45.87			73.79	0.23	0.00	0	0.00	0.000
	Total C3		18.35	0.02%				
	Total C4		61.07	0.06%				
	Total C5		211.03	0.21%				
	Total C6		554.32	0.55%				
	Total C7		4318.06	4.25%				
	Total C8		13381.55	13.18%				
	Total C9		25135.30	24.76%	_,			
	Total C10		35472.09	34.94%				
	Total C11		18268.96	17.99%				
	Total C12		4108.13	4.05%				

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_NO	MW	CTOH
3.04			9.57	0.41	0.00	0	0.00	0.000
3.76			1.57	0.41	0.00	0	0.00	0.000
7.04	propane	N_PROP	6.85	0.41	2.28	3	44.10	2.669
10.90	isobutane	I_BUTA	14.51	0.41	3.63	4	58.12	2.500
12.50			0.78	0.41				
13.00	n-butane	N_BUTA	30.06	0.41	7.52	4	58.12	2.500
14.52	c-2-butene	C2BUTE	0.81	0.41	0.20	4	56.11	2.001
15.52	t-2-butene	T2BUTE	14.42	0.41	3.61	4	56.11	2.001
16.49			16.99	0.41	0.00	0	0.00	0.000
17.21	isopentane	IPENTA	83.98	0.41	16.80	5	72.15	2.401
17.87	1-pentene	PENTE1	14.76	0.41	2.95	5	70.13	2.000
18.00			6.46	0.41	0.00	0	0.00	0.000
18.42	2-methyl-1-butene	B1E2M	17.22	0.41	3.44	5	70.13	2.000
18.64	n-pentane	N_PENT	48.41	0.41	9.68	5	72.15	2.401
18.85	isoprene	I_PREN	18.03	0.41	3.61	5	68.11	1.599
19.09	t-2-pentene	T2PENE	2.04	0.41	0.41	5	70.13	2.000
19.26			15.63	0.41	0.00	0	0.00	0.000
19.47	c-2-pentene	C2PENE	0.92	0.41	0.18	5	70.13	2.000
19.68	2-methyl-2-butene	B2E2M	18.15	0.41	3.63	5	70.13	2.000
19.99			15.55	0.41	0.00	0	0.00	0.000
20.31			15.06	0.41	0.00	0	0.00	0.000
20.40	2,2-dimethylbutane	BU22DM	7.83	0.41	1.31	6	86.17	2.333
20.60			14.31	0.41	0.00	0	0.00	0.000
20.88			13.72	0.41	0.00	0	0.00	0.000
21.14	cyclopentene	CPENTE	15.60	0.41	3.12	5	68.11	1.599
21.40	4-methyl-1-pentene	P1E4ME	15.89	0.41	2.65	6	84.16	2.001
21.64	3-methyl-1-pentene	P1E3ME	12.12	0.41	2.02	6	84.16	2.001
21.75	cyclopentane	CPENTA	9.19	0.41	1.84	5	70.13	2.000
21.90	2,3-dimethylbutane	BU23DM	23.39	0.41	3.90	6	86.17	2.333
22.14	2-methylpentane	PENA2M	71.64	0.41	11.94	6	86.17	2.333
22.30			13.38	0.41	0.00	0	0.00	0.000
22.51			7.24	0.41	0.00	0	0.00	0.000
22.70	2,2-dimethylpentane	PEN22M	8.92	0.41	1.27	7	100.20	2.286
22.81	3-methylpentane	PENA3M	45.66	0.41	7.61	6	86.17	2.333
22.89			9.59	0.41	0.00	0	0.00	0.000
23.08	1-hexene	HEX1E	7.04	0.41	1.1/	6	84.16	2.001
23.26	C6 olefin	C6OLE1	8.07	0.41	1.35	6	84.16	2.001
23.44			10.29	0.41	0.00		0.00	0.000
23.63	n-hexane	N_HEX	103.64	0.41	17.27	D	80.17	2.333
23.77	t-3-hexene + chloroform	TINEXE	7.44	0.41	1.24	0	04.10	2.001
23.94	2-methyl-2-pentene	P2E2ME	10.85	0.41	1.81	0	04.10	2.001
24.10	cis-3-methyl-2-pentene	PZESMC	4.02	0.41	0.67		04.10	2.001
24.26	c-2-hexene	C2HEXE	5.71	0.41	0.95		04.10	2.001
24.39		DOFOLIT	0.50	0.41	0.00		0.00	2 001
24.56	trans-3-methyl-2-pentene	P2E3MT	3.70	0.41	0.02		04.10	2.001
24.74			11.73	0.41	15.00		94.16	2 001
24.83	methylcyclopentane	MCYPNA DENO4M	92.00		15.34		100 20	2.001
25.02	2,4-dimethylpentane	PEN24M	10.00	0.41	2.3/		0.20	0.000
25.12	·····		4.01	0.41			0.00	0.000
25.27		BL IOOON4	5.30	0.41		7	100.00	2 286
25.42		CDENE1	5.8/		1.02		82 15	1 668
25.75		DENITE	5.10 50.20	0.41	9.40		78 11	1.000
25.90	Denzene	DENZE	JU.38	0.41	0.40		0.00	0,000
26.06	0.0 dimethylacatore	DENI22M	7.00		1 13		100.20	2 286
26.15	o,o-aimethyipentane		145.21		24.20		84 16	2,001
20.33	Cyclonexane	HEYAOM	156 20		22.20		98.19	2.001
20.09		PEN23M	82 24	0.41	11.76	3 7	100.20	2.286
1 20.78	z,o-ulmetryperitalie		02.04	· · · · ·		·		1

Canister	: DRI-L	
Flight 2,	7/15/97	Taxi

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_NO	MW	СТОН
26.92	cyclohexene	CYHEXE	28.79	0.41	4.80	6	82.15	1.668
27.07	3-methylhexane + pentanal	HEXA3M	236.46	0.41	33.78	7	100.20	2.286
27.38	1,3-dimethylcyclopentane	CPA13M	76.26	0.41	10.89	7	98.19	2.001
27.50	3-ethylpentane	PA3ET	100.81	0.41	12.60	8	114.23	2.251
27.62	2,2,4-trimethylpentane	PA224M	138.37	0.41	17.30	8	114.23	2.251
27.75	C7 olefin	C7OLE1	3.69	0.41	0.53	7	98.19	2.001
27.98	t-3-heptene	T3HEPE	5.27	0.41	0.75	7	98.19	2.001
28.09	n-heptane	N_HEPT	696.84	0.41	99.55	7	100.20	2.286
28.36	C8 olefin	C8OLE2	6.50	0.41	0.81	8	112.21	2.000
28.56	2,4,4-trimethyl-1-pentene	P1E244	5.05	0.41	0.63	8	112.21	2.000
28.74			4.76	0.41	0.00	0	0.00	0.000
29.05	methylcyclohexane	MECYHX	911.15	0.41	130.16	7	98.19	2.001
29.14			74.03	0.41	0.00	0	0.00	0.000
29.28	C8 paraffin	C8PA1	4.06	0.41	0.51	8	114.23	2.251
29.43	2,5-diemthylhexane	HEX25M	82.13	0.41	10.27	8	114.23	2.251
29.52	2,4-diemthylhexane	HEX24M	242.44	0.41	30.31	8	114.23	2.251
29.84	C8 paraffin	C8PA2	165.09	0.41	20.64	8	114.23	2.251
30.14			142.58	0.41	0.00	0	0.00	0.000
30.24	2,3,-trimethylpentane	PA234M	39.45	0.41	4.93	8	114.23	2.251
30.44	toluene	TOLUE	716.44	0.41	102.35	7	92.14	1.144
30.62	2,3-dimethylhexane	HX23DM	141.85	0.41	17.73	8	114.23	2.251
30.70			76.12	0.41	0.00	0	0.00	0.000
30.81	2-methylheptane	HEP2ME	846.33	0.41	94.04	9	128.26	2.223
30.88	4-methylheptane	HEP4ME	261.45	0.41	29.05	9	128.26	2.223
31.00	C8 paraffin	C8PA3	97.04	0.41	12.13	8	114.23	2.251
31.12	3-methylheptane	HEP3ME	771.27	0.41	96.41	8	114.23	2.251
31.36			624.79	0.41	0.00	0	0.00	0.000
31.44	2,2,5-trimethylhexane	HEX225	251.20	0.41	27.91	9	128.26	2.223
31.56	octene-1	OCT1E	14.76	0.41	1.85	8	112.21	2.000
31.74			216.85	0.41	0.00	0	0.00	0.000
31.83			93.04	0.41	0.00	0	0.00	0.000
31.89			209.60	0.41	0.00	0	0.00	0.000
32.02			43.26	0.41	0.00	0	0.00	0.000
32.12	n-octane	N_OCT	2473.64	0.41	309.21	8	114.23	2.251
32.30			80.56	0.41	0.00	0	0.00	0.000
32.42			216.62	0.41	0.00	0	0.00	0.000
32.54			3.12	0.41	0.00	0	0.00	0.000
32.68			69.35	0.41	0.00	0	0.00	0.000
32.82	2,3,5-trimethylhexane	HEX235	40.65	0.41	4.52	9	128.26	2.223
32.91	2,4-dimethylheptane	HEP24D	80.83	0.41	8.98	9	128.26	2.223
33.05	4,4-dimethylheptane	HEP44D	211.16	0.41	23.46	9	128.26	2.223
33.19			24.23	0.41	0.00	0	0.00	0.000
33.27	2,6-dimethylheptane	HEP26D	588.33	0.41	65.37	9	128.26	2.223
33.41			294.08	0.41	0.00	0	0.00	0.000
33.53	2,5-dimethylheptane	HEP25D	1288.07	0.41	143.12	9	128.26	2.223
33.73	3,3-dimethylheptane	HEP33D	909.96	0.41	101.11	9	128.26	2.223
33.84	C9 olefin	C9OLE1	233.28	0.41	25.92	9	126.24	2.001
33.92	1,1-dimethylcyclohexane	CHX11M	117.19	0.41	14.65	8	112.21	2.000
34.02			69.64	0.41	0.00	0	0.00	1.000
34.14	ethylbenzene	ETBZ	892.72	0.41	111.59	8	100.16	1.250
34.31	C9 olefin	C9OLE3	917.44	0.41	101.94	9	120.24	1.050
34.45	m- & p-xylene	MP_XYL	2396.08	0.41	299.51	- 8	100.10	1.250
34.56	2-methyloctane	OCT2ME	1373.32	0.41	152.59	9	128.20	2.223
34.72			53.40	0.41	0.00	+	100.00	0.000
34.84	3-methyloctane	OCT3ME	1268.96	0.41	141.00	9	120.20	2.223
35.00	C9 paraffin	C9PAR1	132.26	0.41	14.70	9	104.14	2.223
35.08	styrene	STYR	19.40	0.41	2.43	8	104.14	0.000
35.18	1	1	308.67	0.41	0.00	0	0.00	0.000

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_NO	MW	стон]
35.32	o-xylene	O_XYL	1077.24	0.41	134.66	8	106.17	1.251
35.44			723.96	0.41	0.00	0	0.00	0.000
35.56	nonene-1	NONE1	587.42	0.41	65.27	9	126.24	2.001
35.66	C9 paraffin	C9PAR2	359.09	0.41	39.90	9	128.26	2.223
35.80	n-nonane	N_NON	4095.54	0.41	455.06	9	128.26	2.223
36.06	C9 olefin	C9OLE4	147.59	0.41	16.40	9	126.24	2.001
36.22			99.66	0.41	0.00	0	0.00	0.000
36.29			719.78	0.41	0.00	0	0.00	0.000
36.47	isopropylbenzene	IPRBZ	675.95	0.41	75.11	9	120.20	1.335
36.65			101.32	0.41	0.00	0	0.00	0.000
36.75	C9 paraffin 3	C9PA3	1074.70	0.41	119.41	9	128.26	2.223
36.86			123.42	0.41	0.00	0	0.00	0.000
37.06	isopropylcyclohexane	IPCYHX	2351.92	0.41	261.32	9	126.24	2.001
37.21	2,6-dimethyloctane	OCT26D	382.64	0.41	38.26	10	142.29	2.201
37.27			298.49	0.41	0.00	0	0.00	0.000
37.37	3,6-dimethyloctane	OCT36M	791.52	0.41	79.15	10	142.29	2.201
37.50	n-propylbenzene	N_PRBZ	864.40	0.41	96.04	9	120.20	1.335
37.61			155.22	0.41	0.00	0	0.00	0.000
37.72	m-ethyltoluene	M_ETOL	1281.36	0.41	142.37	9	120.20	1.335
37.80	p-ethyltoluene	P_ETOL	1003.72	0.41	111.52	9	120.20	1.335
37.90			260.41	0.41	0.00	0	0.00	0.000
37.96	1,3,5-trimethylbenzene	BZ135M	1406.78	0.41	156.31	9	120.20	1.335
38.03			874.45	0.41	0.00	0	0.00	0.000
38.17	C10 paraffin	C10P_A	923.88	0.41	92.39	10	142.29	2.201
38.27	·······		836.94	0.41	0.00	0	0.00	0.000
38.37	o-ethyltoluene	O_ETOL	841.64	0.41	93.52	9	120.20	1.335
38.48			122.94	0.41	0.00	0	0.00	0.000
38.58			431.06	0.41	0.00	0	0.00	0.000
38.69			484.34	0.41	0.00	0	0.00	0.000
38.88	1.2.4-trimethylbenzene	BZ124M	2734.19	0.41	303.80	9	120.20	1.335
39.01			441.09	0.41	0.00	0	0.00	0.000
39.09			317.34	0.41	0.00	0	0.00	0.000
39.17	n-decane	N_DEC	3989.70	0.41	398.97	10	142.29	2.201
39.30	C10 aromatic	C10AR1	164.22	0.41	16.42	10	134.22	1.401
39.39	isobutvlbenzene	I_BUBZ	430.97	0.41	43.10	10	134.22	1.401
39.48	sec-butylbenzene	S_BUBZ	558.33	0.41	55.83	10	134.22	1.401
39.72	C10 aromatic 7	C10AR7	596.44	0.41	5 9.64	10	134.22	1.401
39.85	1.2.3-trimethylbenzene	BZ123M	1518.81	0.41	168.76	9	120.20	1.335
39.97	C10 paraffin	C10P_C	1086.52	0.41	108.65	10	142.29	2.201
40.17	limonene	LIMON	432.18	0.41	43.22	10	136.24	1.601
40.36	indan	INDAN	671.05	0.41	74.56	9	118.17	1.111
40.49	indene	INDENE	1017.37	0.41	113.04	9	116.15	0.888
40.61	diethylbenzene	DETBZ1	316.22	0.41	31.62	10	134.22	1.401
40.70	C10 aromatic	C10AR2	642.92	0.41	64.29	10	134.22	1.401
40.87	1.4-diethylbenzene	DETBZ2	967.15	0.41	96.72	10	134.22	1.401
41.02	1,2-diethylbenzene	DETBZ3	529.98	0.41	53.00	10	134.22	1.401
41.13			531.92	0.41	0.00	0	0.00	0.000
41.24	2-propyltoluene	TOL2PR	723.68	0.41	72.37	10	134.22	1.401
41.35			118.39	0.41	0.00	0	0.00	0.000
41.46			527.67	0.41	0.00	0	0.00	0.000
41.52	C10 aromatic	C10AR4	371.02	0.41	37.10	10	134.22	1.401
41.60	C10 aromatic	C10AR5	329.42	0.41	32.94	10	134.22	1.401
41.00	isopropyltoluene	IPRTOL	546.29	0.41	54.63	10	134.22	1.401
41 94			266.67	0.41	0.00	0	0.00	0.000
42.08			349.64	0.41	0.00	0 0	0.00	0.000
42 15			211.51	0.41	0.00		0.00	0.000
42 20	n-undecane	N UNDE	1408.31	0.41	128.03	11	156.30	2.182
42.23	C10 aromatic	C10AR6	238.21	0.41	23.82	2 10	134.22	1.401

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_NO	MW	СТОН
42.54			154.59	0.41	0.00	0	0.00	0.000
42.60			219.85	0.41	0.00	0	0.00	0.000
42.74	-		46.53	0.41	0.00	0	0.00	0.000
42.83	1,2,4,5-tetramethylbenzene	BZ1245	244.45	0.41	24.45	10	134.22	1.401
42.94	1,2,3,5-tetramethylbenzene	BZ1235	206.35	0.41	20.64	10	134.22	1.401
43.06			120.46	0.41	0.00	0	0.00	0.000
43.19			89.84	0.41	0.00	0	0.00	0.000
43.24			127.18	0.41	0.00	0	0.00	0.000
43.33			129.29	0.41	0.00	0	0.00	0.000
43.53	C11 paraffin	C11P_B	136.38	0.41	12.40	11	156.32	2.183
43.65			167.57	0.41	0.00	0	0.00	0.000
43.77			170.99	0.41	0.00	0	0.00	0.000
43.95	1,2,3,4-trimethylbenzene	BZ1234	271.62	0.41	27.16	10	134.22	1.401
44.07			90.03	0.41	0.00	0	0.00	0.000
44.20			58.52	0.41	0.00	0	0.00	0.000
44.27			140.37	0.41	0.00	0	0.00	0.000
44.40			77.54	0.41	0.00	0	0.00	0.000
44.57	C11 aromatic	C11AR3	28.90	0.41	2.63	11	148.22	1.453
44.76			22.96	0.41	0.00	0	0.00	0.000
44.92	naphthalene	NAPHTH	102.83	0.41	10.28	10	128.16	0.800
45.06			36.26	0.41	0.00	0	0.00	0.000
45.18	n-dodecane	N_DODE	111.34	0.41	9.28	12	170.34	2.168
45.29			42.80	0.41	0.00	0	0.00	0.000
45.39			9.24	0.41	0.00	0	0.00	0.000
45.49			10.02	0.41	0.00	0	0.00	0.000
45.64			12.51	0.41	0.00	0	0.00	0.000
45.74			3.28	0.41	0.00	0	0.00	0.000
45.88			13.57	0.41	0.00	0	0.00	0.000
	Total C3		17.99	0.03%				
	Total C4		60.58	0.09%				
	Total C5		324.66	0.46%				
	Total C6		524.61	0.74%				
	Total C7		3228.64	4.56%				
	Total C8		11177.10	15.80%				
	Total C9		21042.13	29.74%				
	Total C10		24404.49	34.50%				
	Total C11		8762.35	12.39%				
	Total C12		1202.78	1.70%				

٠

•

		_' ''	****	
3.03 9.57 0.29 0	00	0	0.00	0.000
3.75 1.52 0.29 0	00	0	0.00	0.000
7.03 propane N_PROP 6.47 0.29 2	16	3	44.10	2.669
10.88 isobutane I_BUTA 13.15 0.29 3	29	4	58.12	2.500
12.99 n-butane N_BUTA 28.35 0.29 7	09	4	58.12	2.500
14.51 c-2-butene C2BUTE 0.76 0.29 0	19	4	56.11	2.001
16.24 t-2-butene T2BUTE 2.83 0.29 0	71	4	56.11	2.001
16.65 5.28 0.29 0	00	0	0.00	0.000
17.20 isopentane IPENTA 66.53 0.29 13	31	5	72.15	2.401
17.76 2.70 0.29 0	00	0	0.00	0.000
17.99 1-pentene PENTE1 6.26 0.29 1	25	5	70.13	2.000
18.42 2-methyl-1-butene B1E2M 3.13 0.29 0	63	5	70.13	2.000
18.62 n-pentane N_PENT 45.85 0.29 9	17	5	72.15	2.401
18.78 3.83 0.29 0	00	0	0.00	0.000
19.07 t-2-pentene T2PENE 2.72 0.29 0	54	5	70.13	2.000
19.46 c-2-pentene C2PENE 0.90 0.29 0	18	5	70.13	2.000
19.69 2-methyl-2-butene B2E2M 4.55 0.29 0	91	5	70.13	2.000
19.83 3.06 0.29 0	00	0	0.00	0.000
20.17 4.31 0.29 0	00	0	0.00	0.000
20.40 2,2-dimethylbutane BU22DM 7.93 0.29 1	32	6	86.17	2.333
20.73 2.27 0.29 0	00	0	0.00	0.000
20.86 1.94 0.29 0	00	0	0.00	0.000
21.01 cyclopentene CPENTE 1.99 0.29 0	40	5	68.11	1.599
21.14 4-methyl-1-pentene P1E4ME 0.99 0.29 0	17	6	84.16	2.001
21.44 3-methyl-1-pentene P1E3ME 2.72 0.29 0	45	6	84.16	2.001
21.74 cvclopentane CPENTA 10.95 0.29 2	19	5	70.13	2.000
21.89 2.3-dimethylbutane BU23DM 13.11 0.29 2	19	6	86.17	2.333
22.13 2-methylpentane PENA2M 55.07 0.29 9	18	6	86.17	2.333
22.46 2.59 0.29 0	00	0	0.00	0.000
22.67 2.2-dimethylpentane PEN22M 1.68 0.29 0	24	7	100.20	2.286
22.79 3-methylpentane PENA3M 42.17 0.29 7	03	6	86.17	2.333
23.05 1-hexene HEX1E 1.80 0.29 0	30	6	84.16	2.001
23.24 1.57 0.29 0	00	0	0.00	0.000
23.62 n-hexane N HEX 97.05 0.29 16	18	6	86.17	2.333
23.85 t-2-hexene T2HEXE 1.49 0.29 0	25	6	84.16	2.001
24.28 c-2-hexene C2HEXE 1.64 0.29 0	27	6	84.16	2.001
24.73 6.05 0.29 0	00	0	0.00	0.000
24.82 methylcyclopentane MCYPNA 87.66 0.29 14	61	6	84.16	2.001
25.01 2.4-dimethylpentane PEN24M 11.33 0.29 1	62	7	100.20	2.286
25.24 2.21 0.29 0	00	0	0.00	0.000
25.90 benzene BENZE 47.51 0.29 7	92	6	78.11	1.000
26.14 3.3-dimethylpentane PEN33M 8.27 0.29 1	18	7	100.20	2.286
26.32 cvclohexane CYHEXA 138.27 0.29 23	05	6	84.16	2.001
26.68 2-methylhexane HEXA2M 147.00 0.29 21	00	7	98.19	2.001
26.77 2.3-dimethylpentane PEN23M 77.07 0.29 11	01	7	100.20	2.286
26.92 cvclohexene CYHEXE 26.41 0.29 4	40	6	82.15	1.668
27.06 3-methylhexane + pentanal HEXA3M 224.17 0.29 32	.02	7	100.20	2.286
27.37 1.3-dimethylcyclopentane CPA13M 69.42 0.29 9	92	7	98.19	2.001
27.50 3-ethylpentane PA3ET 95.61 0.29 11	.95	8	114.23	2.251
27.61 2.2.4-trimethylpentane PA224M 135.63 0.29 16	.95	8	114.23	2.251
27.86 C7 olefin C7OLE2 0.75 0.29 C	.11	7	98.19	2.001
28.08 n-heptane N_HEPT 678.99 0.29 97	.00	7	100.20	2.286
29.04 methylcyclohexane MECYHX 899.17 0.29 128	.45	7	98.19	2.001
29.14 C8 paraffin C8PA1 74.49 0.29 9	.31	8	114.23	2.251

SAM_RT NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	стон
29.32		2.55	0.29	0.00	0	0.00	0.000
29.43 2,5-diemthylhexane	HEX25M	79.92	0.29	9.99	8	114.23	2.251
29.51 2,4-diemthylhexane	HEX24M	241.34	0.29	30.17	8	114.23	2.251
29.84 C8 paraffin	C8PA2	160.05	0.29	20.01	8	114.23	2.251
29.98		2.06	0.29	0.00	0	0.00	0.000
30.13		141.53	0.29	0.00	0	0.00	0.000
30.23 2.3,-trimethylpentane	PA234M	39.51	0.29	4.94	8	114.23	2.251
30.43 toluene	TOLUE	714.00	0.29	102.00	7	92.14	1.144
30.61 2,3-dimethylhexane	HX23DM	144.33	0.29	18.04	8	114.23	2.251
30.69		76.24	0.29	0.00	Ō	0.00	0.000
30.80 2-methylheptane	HEP2ME	857.40	0.29	95.27	9	128.26	2.223
30.87 4-methylheptane	HEP4ME	266.80	0.29	29.64	9	128.26	2.223
30.99 C8 paraffin	C8PA3	98.03	0.29	12.25	8	114.23	2.251
31.11 3-methylheptane	HEP3ME	782.79	0.29	97.85	8	114.23	2.251
31.36		634.10	0.29	0.00	0	0.00	0.000
31.43 2.2.5-trimethylhexane	HEX225	255.35	0.29	28.37	9	128.26	2.223
31.55 octene-1	OCT1E	15.24	0.29	1.91	8	112.21	2.000
31.74 1,1-dimethylcyclohexane	CHX11M	219.00	0.29	27.38	8	112.21	2.000
31.83		95.61	0.29	0.00	Ō	0.00	0.000
31.89		212.13	0.29	0.00	Ō	0.00	0.000
32.01		43.51	0.29	0.00	0	0.00	0.000
32.11 n-octane	N OCT	2556.87	0.29	319.61	8	114.23	2.251
32.30		83.10	0.29	0.00	0	0.00	0.000
32.42		222.57	0.29	0.00	0	0.00	0.000
32.54		3.02	0.29	0.00	0	0.00	0.000
32.68		71.42	0.29	0.00	0	0.00	0.000
32.82 2.3.5-trimethylhexane	HEX235	42.71	0.29	4.75	9	128.26	2.223
32.90 2.4-dimethylbeptane	HEP24D	84.58	0.29	9.40	9	128.26	2.223
33.05 4 4-dimethylheptane	HEP44D	223.11	0.29	24.79	9	128.26	2.223
33.19		25.44	0.29	0.00	0	0.00	0.000
33 27 2 6-dimethylheptane	HEP26D	630.01	0.29	70.00	9	128.26	2,223
33.41		306.05	0.29	0.00	Ō	0.00	0.000
33.52 2.5-dimethylbeptane	HEP25D	1364.92	0.29	151.66	9	128.26	2.223
33.72 3.3-dimethylheptane	HEP33D	969.71	0.29	107.75	9	128.26	2.223
33.83 C9 olefin	C9OLE1	248.91	0.29	27.66	9	126.24	2.001
33.91		125.30	0.29	0.00	0	0.00	0.000
34.02		74.52	0.29	0.00	0	0.00	0.000
34.13 ethvibenzene	ETBZ	961.38	0.29	120.17	8	106.16	1.250
34.31 C9 olefin	C9OLE3	1005.40	0.29	111.71	9	126.24	2.001
34.44 m- & p-xylene	MP XYL	2619.45	0.29	327.43	8	106.16	1.250
34.56 2-methyloctane	OCT2ME	1553.46	0.29	172.61	9	128.26	2.223
34.71		57.74	0.29	0.00	0	0.00	0.000
34.83 3-methyloctane	OCT3ME	1426.47	0.29	158.50	9	128.26	2.223
35.00 C9 paraffin	C9PAR1	146.59	0.29	16.29	9	128.26	2.223
35.08 styrene + heptanal	STYR	21.61	0.29	2.70	8	104.14	1.000
35.17		341.91	0.29	0.00	0	0.00	0.000
35.32 o-xvlene	O_XYL	1208.36	0.29	151.05	8	106.17	1.251
35.44		819.24	0.29	0.00	0	0.00	0.000
35.56 nonene-1	NONE1	665.72	0.29	73.97	9	126.24	2.001
35.66 C9 paraffin	C9PAR2	409.47	0.29	45.50	9	128.26	2.223
35.79 n-nonane	N_NON	4879.10	0.29	542.12	9	128.26	2.223
36.05 C9 olefin	C9OLE4	172.43	0.29	19.16	9	126.24	2.001
36.21		112.74	0.29	0.00	0	0.00	0.000
36.29		838.12	0.29	0.00	0	0.00	0.000

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
36.47	isopropylbenzene	IPRBZ	808.78	0.29	89.86	9	120.20	1.335
36.65			121.82	0.29	0.00	0	0.00	0.000
36.75	C9 paraffin 3	C9PA3	1288.64	0.29	143.18	9	128.26	2.223
36.86	•		155.35	0.29	0.00	0	0.00	0.000
37.05	isopropylcyclohexane	IPCYHX	2916.50	0.29	324.06	9	126.24	2.001
37.21	2,6-dimethyloctane	OCT26D	476.67	0.29	47.67	10	142.29	2.201
37.27			382.70	0.29	0.00	0	0.00	0.000
37.36	3,6-dimethyloctane	OCT36M	1010.74	0.29	101.07	10	142.29	2.201
37.49	n-propylbenzene	N_PRBZ	1076.96	0.29	119.66	9	120.20	1.335
37.60			196.81	0.29	0.00	0	0.00	0.000
37.72	m-ethyltoluene	M_ETOL	1624.07	0.29	180.45	9	120.20	1.335
37.80	p-ethyltoluene	P_ETOL	1325.14	0.29	147.24	9	120.20	1.335
37.89			348.71	0.29	0.00	0	0.00	0.000
37.96	1,3,5-trimethylbenzene	BZ135M	1904.48	0.29	211.61	9	120.20	1.335
38.03			1207.57	0.29	0.00	0	0.00	0.000
38.17	C10 paraffin	C10P_A	1186.33	0.29	118.63	10	142.29	2.201
38.27			1172.05	0.29	0.00	0	0.00	0.000
38.37	o-ethyltoluene	O_ETOL	1111.05	0.29	123.45	9	120.20	1.335
38.48			149.53	0.29	0.00	0	0.00	0.000
38.58			579.56	0.29	0.00	0	0.00	0.000
38.69			637.18	0.29	0.00	0	0.00	0.000
38.87	1,2,4-trimethylbenzene	BZ124M	3792.12	0.29	421.35	9	120.20	1.335
39.01			609.75	0.29	0.00	0	0.00	0.000
39.09			442.48	0.29	0.00	0	0.00	0.000
39.17	n-decane	N_DEC	6145.75	0.29	614.58	10	142.29	2.201
39.30	C10 aromatic	C10AR1	235.68	0.29	23.57	10	134.22	1.401
39.39	isobutylbenzene	I_BUBZ	610.53	0.29	61.05	10	134.22	1.401
39.48	sec-butylbenzene	S_BUBZ	791.91	0.29	79.19	10	134.22	1.401
39.72	C10 aromatic 7	C10AR7	900.18	0.29	90.02	10	134.22	1.401
39.85	1,2,3-trimethylbenzene	BZ123M	2264.33	0.29	251.59	9	120.20	1.335
39.97	C10 paraffin	C10P_C	1791.81	0.29	179.18	10	142.29	2.201
40.16	limonene	LIMON	684.61	0.29	68.46	10	136.24	1.601
40.35	indan	INDAN	1044.18	0.29	116.02	9	118.17	1.111
40.50	indene	INDENE	1646.92	0.29	182.99	9	116.15	0.888
40.61	diethylbenzene	DETBZ1	518.76	0.29	51.88	10	134.22	1.401
40.70	C10 aromatic	C10AR2	1044.57	0.29	104.46	10	134.22	1.401
40.87	1,4-diethylbenzene	DETBZ2	1634.24	0.29	163.42	10	134.22	1.401
41.02	1,2-diethylbenzene	DETBZ3	948.43	0.29	94.84	10	134.22	1.401
41.12			946.51	0.29	0.00	0	0.00	0.000
41.24	2-propyltoluene	TOL2PR	1311.68	0.29	131.17	10	134.22	1.401
41.34			213.23	0.29	0.00	0	0.00	0.000
41.45			954.59	0.29	0.00	0	0.00	0.000
41.52	C10 aromatic	C10AR4	656.56	0.29	65.66	10	134.22	1.401
41.60	C10 aromatic	C10AR5	600.59	0.29	60.06	10	134.22	1.401
41.78	isopropyltoluene	IPRTOL	991.09	0.29	99.11	10	134.22	1.401
41.94			466.06	0.29	0.00	0	0.00	0.000
42.08			688.99	0.29	0.00	0	0.00	0.000
42.15			381.15	0.29	0.00	0	0.00	0.000
42.29	n-undecane	N_UNDE	3152.46	0.29	286.59	11	156.30	2.182
42.48	C10 aromatic	C10AR6	471.79	0.29	47.18	10	134.22	1.401
42.54			310.28	0.29	0.00	0	0.00	0.000
42.60			553.10	0.29	0.00	0	0.00	0.000
42.83	1,2,4,5-tetramethylbenzene	BZ1245	538.30	0.29	53.83	10	134.22	1.401
42.93	1.2.3.5-tetramethylbenzene	BZ1235	443.11	0.29	44.31	10	134.22	1.401

Canister: DRI -N Flight 2, 7/15/97 10,000'

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJPP	3V	C_N	MW	СТОН
43.06			255.59	0.29	0.00	0	0.00	0.000
43.19			227.25	0.29	0.00	0	0.00	0.000
43.24	-		254.50	0.29	0.00	0	0.00	0.000
43.32			299.25	0.29	0.00	0	0.00	0.000
43.52	C11 paraffin	C11P_B	318.68	0.29	28.97	11	156.32	2.183
43.65			401.84	0.29	0.00	0	0.00	0.000
43.77			393.80	0.29	0.00	0	0.00	0.000
43.95	1,2,3,4-trimethylbenzene	BZ1234	666.86	0.29	66.69	10	134.22	1.401
44.07			236.40	0.29	0.00	0	0.00	0.000
44.19			176.72	0.29	0.00	0	0.00	0.000
44.27			339.15	0.29	0.00	0	0.00	0.000
44.40			149.77	0.29	0.00	0	0.00	0.000
44.46	C11 aromatic	C11AR1	63.48	0.29	5.77	11	148.22	1.453
44.57	C11 aromatic	C11AR3	80.05	0.29	7.28	11	148.22	1.453
44.76			66.91	0.29	0.00	0	0.00	0.000
44.92	naphthalene	NAPHTH	289.40	0.29	28.94	10	128.16	0.800
45.06			106.93	0.29	0.00	0	0.00	0.000
45.18	n-dodecane	N_DODE	350.23	0.29	29.19	12	170.34	2.168
45.29			120.93	0.29	0.00	0	0.00	0.000
45.39			30.29	0.29	0.00	0	0.00	0.000
45.49			58.75	0.29	0.00	0	0.00	0.000
45.63			46.21	0.29	0.00	0	0.00	0.000
45.74			15.65	0.29	0.00	0	0.00	0.000
45.87			56.76	0.29	0.00	0	0.00	0.000
	Total C3		17.56	0.02%				
	Total C4		42.26	0.04%				
	Total C5		167.07	0.18%				
	Total C6		339.09	0.36%				
	Total C7		3108.68	3.27%				
	Total C8		11553.29	12.16%				
	Total C9		24474.91	25.76%				
	Total C10		35043.02	36.89%				
	Total C11		17019.27	17.92%				
	Total C12		3248.29	3.42%				

3.04 9.48 0.24 0.00 0 0.00 0.000 3.77 P. PPOP 7.37 0.24 0.00 0 0.000 7.04 propane I. BUTA 4.56 0.24 2.46 3.44.10 2.680 13.00 n-butane N. BUTA 30.67 0.24 7.72 4 56.12 2.500 14.52 c-2-butene C2BUTE 2.35 0.24 0.69 5 70.13 2.000 17.201 ponteme PENTET 7.72.30 0.24 1.4.46 5 70.13 2.000 17.201 pontene PENTET 4.70 0.24 0.244 5.72.15 2.401 19.06 t-2-pentene T2-PENE 1.72 0.244 0.74 5 70.13 2.000 19.46 2-pentene T2-PENE 1.72 0.244 0.77 5 70.13 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
3.77 0.24 0.00 0.00 0.000 0.000 7.04 propane N.PROP 7.32 2.24 2.46 3 44.10 2.66 0.80 lacbutane I.BUTA 14.56 0.24 7.72 4 58.12 2.500 14.52 (2-2-butene C28UTE 2.35 0.24 7.72 4 58.12 2.500 17.21 lacoperitane IPENTA 77.30 0.24 14.46 5 72.13 2.000 18.43 Depentane PENTET 4.70 0.24 0.44 5 72.13 2.000 18.43 Depentane N.PENT 48.86 0.24 9.74 5 70.13 2.000 19.06 L2-pentene T2PENE 1.72 0.24 0.34 5 70.13 2.000 19.68 Depentane DEVENE 3.36 0.24 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>3.04</td> <td></td> <td></td> <td>9.48</td> <td>0.24</td> <td>0.00</td> <td>0</td> <td>0.00</td> <td>0.000</td>	3.04			9.48	0.24	0.00	0	0.00	0.000
7.04 propen N_PROP 7.37 0.24 2.46 3 44.10 2.660 10.89 bootune I. BUTA 30.87 0.24 7.72 4 58.12 2.500 14.52 c.2-butene C2BUTE 2.35 0.24 0.59 4 66.11 2.000 16.30 Tenethyl-1-butene B1E3ME 0.47 0.24 14.46 5 70.13 2.000 17.91 I-ponitene PENTET 47.0 0.24 0.44 5 70.13 2.000 18.63 Poneinane N_PENT 48.68 0.24 0.74 5 72.15 2.401 19.08 t.2-pentene T2PENE 1.72 0.24 0.34 0.72 5 70.13 2.000 19.68 c-pentene C2PENE 3.64 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <	3.77			1.79	0.24	0.00	0	0.00	0.000
10.09 isource I.BUTA 14.54 0.24 3.64 6.812 2.500 13.00 n-butane N.BUTA 30.37 0.24 7.72 4 58.12 2.500 14.52 c-2-butene C2BUTE 2.35 0.24 0.59 4 56.11 2.001 16.33 greenty-1-butene B1ESME 0.47 0.24 0.46 5 7.13 2.000 18.43 pentene PENTE1 4.70 0.24 0.44 5 7.13 2.000 18.43 pentyl-1-butene B1E2M 1.47 0.24 0.44 5 70.13 2.000 18.43 pentyl-1-butene B12ZM 1.47 0.24 0.67 5 70.13 2.000 19.66 2-pentene C2PENE 3.36 0.24 0.67 5 70.13 2.000 19.69 2-detinyl-butane BU22DM 7.04 0.24 1.77 6 66.17 2.33 20.60 amethyl-butane BU22DM 7.04 0.24 1.98 71.01.20 2.	7.04	propane	N_PROP	7.37	0.24	2.46	3	44.10	2.669
13.00 n-butane N_BUTA 30.87 0.24 7.72 4 58.12 2.500 14.52 C2-butene C2BUTE 2.35 0.24 0.99 4 6.61 2.001 17.21 isopentane IPENTA 72.30 0.24 1.046 5 72.15 2.401 17.99 i-penitree PENTE1 4.70 0.24 0.94 5 70.13 2.000 18.63 penitrae N_PENT 48.68 0.24 0.94 5 70.13 2.000 19.46 52-penitrae TZPENE 1.72 0.24 0.04 5 70.13 2.000 19.46 62-penitrae C2PENE 3.65 0.24 0.67 5 70.13 2.000 20.17 44 0.24 0.61 0.00 0.000 0.00 0.000 0.00 0.00 0.00 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	10.89	isobutane	I_BUTA	14.54	0.24	3.64	4	58.12	2.500
14.52 c-2-butene C28UTE 2.35 0.24 0.59 4 56.11 2.001 16.30 Camethyl-butene B163ME 0.47 0.24 0.09 5 70.13 2.000 17.21 [sopentane PENTE 4.70 0.24 0.94 15 70.13 2.000 18.43 Zmethyl-1-butene B1E2M 1.47 0.24 0.94 5 70.13 2.000 18.43 Zmethyl-1-butene B1E2M 1.47 0.24 0.34 5 70.13 2.000 19.08 2-pentene C2PENE 1.72 0.24 0.34 5 70.13 2.000 19.08 2-pentene C2PENE 1.72 0.24 0.04 0.72 5 70.13 2.000 20.17 Sectione D22 0.24 0.00 0 0.00	13.00	n-butane	N_BUTA	30.87	0.24	7.72	4	58.12	2.500
16.30 2-methyl-i-butene BESME 0.47 0.24 0.046 5 70.13 2.000 17.21 Isopentane IPENTE 4.70 0.24 0.44 5 70.13 2.000 18.43 2-methyl-i-butene BIE2M 1.47 0.24 0.29 5 70.13 2.000 18.63 poentane N_PENT 48.68 0.24 0.94 5 70.13 2.000 19.68 2-pentene TZPENE 1.72 0.24 0.34 5 70.13 2.000 19.46 2-pentene TZPENE 3.80 0.24 0.87 5 70.13 2.000 20.17	14.52	c-2-butene	C2BUTE	2.35	0.24	0.59	4	56.11	2.001
17.21 isopentane IPENTA 72.30 0.24 14.46 5 72.15 2.401 17.99 i-pentane N_PENT 48.06 0.24 9.74 5 70.13 2.000 18.43 2-methyl-1-butene N_PENT 48.06 0.24 9.74 5 70.13 2.000 19.06 12-pentene T2PENE 1.72 0.24 0.34 5 70.13 2.000 19.06 2-pentene C2PENE 3.36 0.24 0.07 5 70.13 2.000 19.68 2-methyl-2-butene B222M 3.61 0.24 0.02 0.000	16.30	3-methyl-1-butene	B1E3ME	0.47	0.24	0.09	5	70.13	2.000
17.99 1-pentene PENTE1 4.70 0.24 0.94 5 70.13 2.000 18.63 prenthyl-1-butene BIE2M 1.47 0.24 0.94 5 70.13 2.000 18.63 prentane N_PENT 48.68 0.24 9.74 5 72.15 2.401 19.08 12-pentene C2PENE 3.36 0.24 0.67 5 70.13 2.000 19.69 2-methyl-2-butene B2E2M 3.61 0.24 0.00 0.000 0.000 20.17 C42-d 0.00 0.00 0.000 0.	17.21	isopentane	IPENTA	72.30	0.24	14.46	5	72.15	2.401
18.43 2-methyl-butene B1E2M 1.47 0.24 0.29 5 70.13 2.000 18.63 n-pentane T2/ENE 1.72 0.24 0.34 5 70.13 2.000 19.08 12-pentene C2/PENE 3.36 0.24 0.67 5 70.13 2.000 20.17 EXAMPS 3.36 0.24 0.07 5 70.13 2.000 20.17 EXAMPS 3.36 0.24 0.00 0.000 0.000 20.40 2.2-dimethylbutane BU22DM 7.04 0.24 1.17 6 86.17 2.33 20.89 C2 2.2-dimethylbutane BU22DM 1.38 0.24 0.04 0.000 0.000 21.89 2.3-dimethylbutane BU22DM 1.36 0.24 0.154 6 86.17 2.333 22.60 3.3-dimethylbentane PENA2M 63.23 0.24 0.54 68.17 2.333 23.61 1-texene HEX1 0.24 7.75 6 86.17 2.333 24.73	17.99	1-pentene	PENTE1	4.70	0.24	0.94	5	70.13	2.000
18.63 In-pentane N_PENT 48.68 0.24 9.74 5 72.15 2.4011 19.06 Ic-2-pentane C2PENE 3.36 0.24 0.67 5 70.13 2.000 19.46 Ic-2-pentane C2PENE 3.36 0.24 0.67 5 70.13 2.000 20.17 EXPENDE 3.61 0.24 0.72 5 70.13 2.000 20.40 [2,2-dimethylbutane BU22DM 7.04 0.24 0.00 0.00 0.00 0.00 21.74 cyclopentane CPENTA 9.66 0.24 1.93 5 70.13 2.000 21.8 0.2.4 0.00 0.00 0.00 0.00 0.00 0.000 0.000 21.8 0.2.4 0.00 0.00 0.000	18.43	2-methyl-1-butene	B1E2M	1.47	0.24	0.29	5	70.13	2.000
19.08 I-2-pentene T2PENE 1.72 0.24 0.34 5 70.13 2.000 19.46 0-2-pentene C2PENE 3.36 0.24 0.77 5 70.13 2.000 20.17 4.42 0.24 0.72 5 70.13 2.000 20.40 (2,2-dimethylbutane BU22DM 7.04 0.24 1.17 6 86.17 2.33 20.89 2.24 0.24 0.24 1.03 5 70.13 2.000 21.89 (2,2-dimethylbutane BU23DM 13.98 0.24 1.83 5 70.13 2.000 22.80 (3-methylpentane PENA2M 63.23 0.24 1.05.4 6 86.17 2.33 23.06 (1-hexene HEX1E 2.25 0.24 0.38 6 84.16 2.001 23.62 (1-hexene N,HEX 105.84 0.24 17.64 6 86.17 2.333 23.06 (1-hexene N,HEX 105.84 0.24 17.64 6 86.17 2.333 24.01 (2-dimethylpentane PENA3M 46.37 0.24 17.64	18.63	n-pentane	N_PENT	48.68	0.24	9.74	5	72.15	2.401
19.46 ic-2-pentene C2PENE 3.36 0.24 0.72 5 70.13 2.000 19.69 2-methyl-butene BZE2M 3.61 0.24 0.72 5 70.13 2.000 20.17 U20.17 4.42 0.24 0.00 0 0.00 0.000 20.40 (2,2-dimethylbutane BU22DM 7.04 0.24 0.00 0 0.00 0.000 21.74 (cyclopentane CPENTA 9.66 0.24 1.93 5 70.13 2.000 22.33 22.3 (amethylpentane PENA2M 13.98 0.24 10.64 68.17 2.333 22.80 (3-methylpentane PENA2M 13.66 0.24 10.64 68.17 2.333 23.06 (1-hexane PENA2M 13.66 0.24 0.00 0 0.00 0.000 24.73 68.17 2.333 24.73 68.17 2.333 24.73 75 68.17 2.333 24.73 75 68.17 2.333 24.176 <	19.08	t-2-pentene	T2PENE	1.72	0.24	0.34	5	70.13	2.000
19.69 2-methyl-2-butene BZE2M 3.61 0.24 0.72 5 70.13 2.000 20.17 4.42 0.24 0.00 0 0.00 0.000 20.40 2.2-dimethylbutane BU22DM 7.04 0.24 1.17 6 86.17 2.333 20.89 2.2-dimethylpentane CPENTA 9.66 0.24 1.93 5 70.13 2.000 21.89 2.3-dimethylpentane PENA2M 63.23 0.24 1.93 6 86.17 2.333 22.60 2.2-dimethylpentane PENA2M 63.23 0.24 0.19 7 10.02 2.286 22.80 3-methylpentane PENA3M 46.47 0.24 0.775 6 86.17 2.333 23.06 1-hexene NHEX 105.84 0.24 0.764 6 86.17 2.333 24.73 methylcyclopentane MCYPNA 96.85 0.24 1.64 6 84.16 2.001	19.46	c-2-pentene	C2PENE	3.36	0.24	0.67	5	70.13	2.000
20.17	19.69	2-methyl-2-butene	B2E2M	3.61	0.24	0.72	5	70.13	2.000
20.40 2,2-dimethylbutane BU22DM 7.04 0.24 0.17 6 66.17 2.333 20.89 2.28 0.24 0.00 0 0.00 0.000 21.74 cyclopentane CPENTA 9.66 0.24 1.93 5 70.13 2.000 21.32 -methylpentane PENA2M 63.20 0.24 0.04 6 86.17 2.333 22.66 2.2-dimethylpentane PENA2M 63.64 0.24 0.19 7 100.20 2.286 23.06 1-hexane HEX1E 2.25 0.24 0.38 6 84.16 2.001 23.62 n-hexane N_HEX 105.64 0.24 17.64 6 66.17 2.333 24.42 methylcyclopentane MCYPNA 96.85 0.24 16.14 6 84.16 2.001 25.01 2.4-dimethylpentane PEN24M 12.31 0.24 1.64 6 84.16 2.001 25.01 2.	20.17			4.42	0.24	0.00	0	0.00	0.000
20.89 2.28 0.24 0.00 0 0.001 0.000 21.74 cyclopentane CPENTA 9.66 0.24 1.33 5 70.13 2.000 21.69 2.3-dimethylpentane PENA2M 63.23 0.24 1.054 6 86.17 2.333 22.60 3-methylpentane PENA2M 46.32 0.24 0.75 6 66.17 2.333 23.06 1-hexene HEX1E 2.25 0.24 0.38 6 84.16 2.001 23.62 n-hexane N_HEX 105.64 0.24 17.64 6 66.17 2.333 24.73 methylcyclopentane MCYPNA 96.85 0.24 17.64 6 66.17 2.332 24.31 1.24-dimethylpentane PEN24M 12.31 0.24 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	20.40	2,2-dimethylbutane	BU22DM	7.04	0.24	1.17	6	86.17	2.333
21.74 cyclopentane CPENTA 9.66 0.24 1.93 5 70.13 2.000 21.89 2,3-dimethylputane PENA2M 63.23 0.24 1.0.54 6 86.17 2.333 22.66 2,2-dimethylpentane PENA2M 63.23 0.24 1.0.54 6 86.17 2.333 22.80 3-methylpentane PENA2M 63.23 0.24 1.75 6 86.17 2.333 23.60 1-hexane N_HEX 105.84 0.24 7.75 6 86.17 2.333 24.73 - 6.08 0.24 0.08 6 84.16 2.001 2.4-dimethylpentane PEN24M 12.31 0.24 1.76 7 100.20 2.86 25.59 - 2.46 0.24 0.00 0 0.00 0.000 0.	20.89			2.28	0.24	0.00	0	0.00	0.000
21.99 2,3-dimethylbottane PENA2M 63.23 0.24 10.54 6 86.17 2.333 22.13 2-methylpentane PENA2M 63.23 0.24 10.54 6 86.17 2.333 22.60 3-methylpentane PEN22M 1.36 0.24 7.75 6 86.17 2.333 23.00 1-hexane HEX1E 2.25 0.24 0.38 6 84.16 2.001 23.62 n-hexane N_HEX 105.84 0.24 17.64 6 86.17 2.333 24.73 Methylcyclopentane MCYPNA 96.85 0.24 16.14 6 84.16 2.001 25.24 methylcyclopentane PEN24M 12.31 0.24 1.76 7 100.20 2.286 25.59 2.46 0.24 0.00 0 0.00 0.000 <td>21.74</td> <td>cyclopentane</td> <td>CPENTA</td> <td>9.66</td> <td>0.24</td> <td>1.93</td> <td>5</td> <td>70.13</td> <td>2.000</td>	21.74	cyclopentane	CPENTA	9.66	0.24	1.93	5	70.13	2.000
22.13 2-methylpentane PENA2M 63.23 0.24 10.54 6 86.17 2.333 22.66 2.2-dimethylpentane PENA3M 46.47 0.24 0.75 6 86.17 2.333 23.06 1-hexene HEX1E 2.25 0.24 0.38 6 84.16 2.001 23.05 1-hexene N_HEX 105.84 0.24 17.64 6 86.17 2.333 24.73 - 6.08 0.24 0.00 0.00 0.000 24.82 methylcyclopentane MCYPNA 96.85 0.24 16.14 6 84.16 2.001 2.4-dimethylpentane PEN24M 12.31 0.24 1.76 100.20 2.286 25.24 - 0.24 1.76 10.20 2.286 25.24 - 0.24 1.76 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.286 </td <td>21.89</td> <td>2,3-dimethylbutane</td> <td>BU23DM</td> <td>13.98</td> <td>0.24</td> <td>2.33</td> <td>6</td> <td>86.17</td> <td>2.333</td>	21.89	2,3-dimethylbutane	BU23DM	13.98	0.24	2.33	6	86.17	2.333
22.66 2.2-dimethylpentane PEN22M 1.36 0.24 0.19 7 100.20 2.286 22.80 3-methylpentane PENA3M 46.47 0.24 7.75 6 86.17 2.333 23.06 1-hexane N_HEX 105.84 0.24 0.08 6 84.16 2.001 23.62 n-hexane N_HEX 105.84 0.24 17.64 6 86.17 2.333 24.73 6.08 0.24 16.14 6 84.16 2.001 24.82 methylcyclopentane MCYPNA 96.85 0.24 16.14 6 84.16 2.001 25.51 2.4-dimethylpentane PEN24M 12.31 0.24 1.76 7 100.20 2.286 25.59 2.46 0.24 0.00 0 0.00 0.000 25.90 benzene CYHEXA 157.60 0.24 12.67 7 10.20 2.86 26.62 cyclohexene CYHEXA	22.13	2-methylpentane	PENA2M	63.23	0.24	10.54	6	86.17	2.333
22.80 3-methylpentane PENA3M 46.47 0.24 7.75 6 86.17 2.333 23.06 1-hexane HEX1E 2.25 0.24 0.38 6 84.16 2.001 23.62 n-hexane N_HEX 105.84 0.24 17.64 6 86.17 2.333 24.73 6.08 0.24 0.00 0 0.00 0.00 25.01 2.4-dimethylpentane PEN24M 12.31 0.24 1.14 6 84.16 2.001 25.01 2.4-dimethylpentane PEN24M 12.31 0.24 0.00 0 0.00 0.00 25.59 2.46 0.24 0.00 0 0.00	22.66	2,2-dimethylpentane	PEN22M	1.36	0.24	0.19	7	100.20	2.286
23.06 1-hexane HEXTE 2.25 0.24 0.38 6 84.16 2.001 23.62 n-hexane N_HEX 105.84 0.24 17.64 6 86.17 2.333 24.73 6.08 0.24 0.00 0 0.00 0.000 24.82 methylcyclopentane MCYPNA 96.85 0.24 16.14 6 84.16 2.001 25.01 2.4-dimethylpentane PEN24M 12.31 0.24 0.00 0 0.00 0.000 25.59 2.46 0.24 0.00 0 0.00 0.000 25.90 benzene BENZE 56.14 0.24 9.36 6 78.11 1.000 26.632 cyclohexane CYHEXA 157.60 0.24 26.27 6 84.16 2.001 26.632 cyclohexane CYHEXA 157.80 0.24 15.66 82.15 1.668 27.63 -methylhexane + pentanal HEXA2M 28.04	22.80	3-methylpentane	PENA3M	46.47	0.24	7.75	6	86.17	2.333
23.62 n-hexane N_HEX 105.84 0.24 17.64 6 86.77 2.333 24.73 6.08 0.24 0.00 0 0.000 0.000 24.82 methylcyclopentane MCYPNA 96.85 0.24 16.14 6 84.16 2.001 25.01 2.4-dimethylpentane PEN24M 12.31 0.24 1.76 7 100.20 2.286 25.59 2.4-dimethylpentane PEN24M 12.31 0.24 0.00 0 0.00 0.000 26.14 3,3-dimethylpentane PEN33M 10.75 0.24 1.54 7 100.20 2.286 26.82 eyclohexane CYHEXA 155.64 0.24 26.27 6 84.16 2.001 26.61 2-methylhexane + pentanal HEXA2M 165.84 0.24 12.68 7 100.20 2.286 27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 11.72 7 96.19 2.001	23.06	1-hexene	HEX1E	2.25	0.24	0.38	6	84.16	2.001
24.73 6.08 0.24 0.00 0 0.00 0.000 24.82 methylcyclopentane MCYPNA 96.85 0.24 16.14 6 84.16 2.001 25.01 2.4-dimethylpentane PEN24M 12.31 0.24 1.76 7 100.20 2.286 25.24 3.71 0.24 0.00 0 0.00 0.000 25.59 2.46 0.24 0.00 0 0.000 0.000 26.14 3.3-dimethylpentane PEN33M 10.75 0.24 1.54 7 100.20 2.286 26.32 cyclohexane CYHEXA 157.60 0.24 26.27 6 84.16 2.001 26.68 2-methylhexane HEXA2M 165.84 0.24 23.69 7 98.19 2.001 26.69 2-cyclohexane CYHEXE 33.34 0.24 5.56 6 82.15 1.668 27.06 3-methylpentane PA32T 110.41 0.24 13.80 8 114.23 2.251 27.50 3-ethylpentane<	23.62	n-hexane	N_HEX	105.84	0.24	17.64	6	86.17	2.333
24.82 methylcyclopentane MCYPNA 96.85 0.24 16.14 6 64.16 2.001 25.01 2,4-dimethylpentane PEN24M 12.31 0.24 1.76 7 100.20 2.286 25.24 3.71 0.24 0.00 0 0.00 0.000 25.59 2.46 0.24 0.00 0 0.00 0.000 25.90 benzene BENZE 56.14 0.24 9.36 6 78.11 1.000 26.14 3.3-dimethylpentane PEN33M 10.75 0.24 1.54 7 100.20 2.286 26.32 cyclohexane CYHEXA 157.60 0.24 12.68 7 100.20 2.286 26.92 cyclohexane CYHEXE 33.34 0.24 5.56 6 82.15 1.668 27.97 1.3-dimethylpentane PA3ET 110.41 0.24 11.30 7 100.20 2.286 27.50 3-ethylpentane P	24.73			6.08	0.24	0.00	0	0.00	0.000
25.01 2,4-dimethylpentane PEN24M 12.31 0.24 1.76 7 100.20 2.286 25.24 3.71 0.24 0.00 0 0.00 0.000 25.59 2.46 0.24 0.00 0 0.00 0.000 25.90 benzene BENZE 56.14 0.24 9.36 6 78.11 1.000 26.32 cyclohexane CYHEXA 157.60 0.24 1.54 7 100.20 2.286 26.32 cyclohexane CYHEXA 157.60 0.24 26.27 6 84.16 2.001 26.68 2-methylhexane HEXA2M 165.84 0.24 23.69 7 98.19 2.001 26.72 cyclohexene CYHEXE 33.34 0.24 12.68 7 100.20 2.286 27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA224M 157.88 0.24 19.74 8 114.23 2.251 1	24.82	methylcyclopentane	MCYPNA	96.85	0.24	16.14	6	84.16	2.001
25.24 3.71 0.24 0.00 0 0.00 0.000 25.59 2.46 0.24 0.00 0 0.00 0.000 25.90 benzene BENZE 56.14 0.24 9.36 6 78.11 1.000 26.14 3.3-dimethylpentane PEN33M 10.75 0.24 1.54 7 100.20 2.286 26.32 cyclohexane CYHEXA 157.60 0.24 26.87 6 84.16 2.001 26.68 2-methylhexane HEXA2M 165.84 0.24 23.69 7 98.19 2.001 26.77 2.3-dimethylpentane PEN23M 88.78 0.24 12.68 7 100.20 2.286 27.37 1.3-dimethylcyclopentane CPA13M 82.03 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 27.61 2.2.4-trimethylpentane N_HEPT 779.47 0.24 111.35 7 100.20 2.286	25.01	2,4-dimethylpentane	PEN24M	12.31	0.24	1.76	7	100.20	2.286
25.59 2.46 0.24 0.00 0.000 0.000 25.90 benzene BENZE 56.14 0.24 9.36 6 78.11 1.000 26.14 3,3-dimethylpentane PEN33M 10.75 0.24 1.54 7 100.20 2.286 26.32 cyclohexane CYHEXA 157.60 0.24 26.37 7 98.19 2.001 26.68 2-methylhexane HEXA2M 165.84 0.24 23.69 7 98.19 2.001 26.77 2,3-dimethylpentane PEN23M 88.78 0.24 15.66 82.15 1.668 27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 37.23 7 100.20 2.286 27.37 1,3-dimethylcyclopentane CPA13M 82.03 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA224M 157.88 0.24 19.74 8 114.23 2.251 27.61 2,2,4-trimethylpentane N_HEPT 777.947 0.24 111.35 7 <t< td=""><td>25.24</td><td></td><td></td><td>3.71</td><td>0.24</td><td>0.00</td><td>0</td><td>0.00</td><td>0.000</td></t<>	25.24			3.71	0.24	0.00	0	0.00	0.000
25.90 benzene BENZE 56.14 0.24 9.36 6 78.11 1.000 26.14 3,3-dimethylpentane PEN33M 10.75 0.24 1.54 7 100.20 2.286 26.32 cyclohexane CYHEXA 157.60 0.24 26.27 6 84.16 2.001 26.68 2-methylhexane HEXA2M 165.84 0.24 23.69 7 98.19 2.001 26.77 2,3-dimethylpentane PEN23M 88.78 0.24 12.68 7 100.20 2.286 26.92 cyclohexene CYHEXE 33.34 0.24 37.23 7 100.20 2.286 27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 28.08 n-heptane N_HEPT 779.47 0.24 111.35 7	25.59			2.46	0.24	0.00	0	0.00	0.000
26.14 3,3-dimethylpentane PEN33M 10.75 0.24 1.54 7 100.20 2.288 26.32 cyclohexane CYHEXA 157.60 0.24 26.27 6 84.16 2.001 26.68 2-methylpentane PEN23M 88.78 0.24 12.68 7 100.20 2.286 26.77 2,3-dimethylpentane PEN23M 88.78 0.24 12.68 7 100.20 2.286 26.92 cyclohexene CYHEXE 33.34 0.24 5.56 6 82.15 1.668 27.06 3-methylbentane + pentanal HEXA3M 260.63 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 27.61 2,2,4-trimethylpentane PA224M 157.88 0.24 19.74 8 114.23 2.251 28.64 10.96 0.24 0.00 0 0.00 0.000	25.90	benzene	BENZE	56.14	0.24	9.36	6	78.11	1.000
26.32 cyclohexane CYHEXA 157.60 0.24 26.27 6 84.16 2.001 26.68 2-methylhexane HEXA2M 165.84 0.24 23.69 7 98.19 2.001 26.77 2,3-dimethylpentane PEN23M 88.78 0.24 12.68 7 100.20 2.286 26.92 cyclohexene CYHEXE 33.34 0.24 5.56 6 82.15 1.668 27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 37.23 7 100.20 2.286 27.37 1,3-dimethylcyclopentane CPA13M 82.03 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 27.61 2,2,4-trimethylpentane PA224M 157.88 0.24 19.74 8 114.23 2.251 28.64 10.96 0.24 10.00 0 0.00 0.000 0.000 29.14 88.17 0.24 143.74 7 98.19 2.011 <	26.14	3,3-dimethylpentane	PEN33M	10.75	0.24	1.54	7	100.20	2.286
26.68 Petrylpexane HEXA2M 165.84 0.24 23.69 7 98.19 2.001 26.77 2,3-dimethylpentane PEN23M 88.78 0.24 12.68 7 100.20 2.286 26.92 cyclohexene CYHEXE 33.34 0.24 5.56 6 82.15 1.668 27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 37.23 7 100.20 2.286 27.37 1,3-dimethylcyclopentane CPA13M 82.03 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 28.08 n-heptane PA224M 157.88 0.24 19.74 8 114.23 2.251 28.64 10.96 0.24 0.00 0 0.00 0.000 0.000 29.04 methylcyclohexane MECYHX 1006.21 0.24 143.74 7 98.19 2.001 29.14 2,5-diemthylhexane HEX25M 95.52 0.24<	26.32	cyclohexane	CYHEXA	157.60	0.24	26.27	6	84.16	2.001
26.77 2.3-dimethylpentane PEN23M 88.78 0.24 12.68 7 100.20 2.286 26.92 cyclohexene CYHEXE 33.34 0.24 5.56 6 82.15 1.668 27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 37.23 7 100.20 2.286 27.37 1,3-dimethylcyclopentane CPA13M 82.03 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 28.08 n-heptane N_HEPT 779.47 0.24 111.35 7 100.20 2.286 28.64 10.96 0.24 0.00 0 0.00 0.000 29.04 methylcyclohexane MECYHX 1006.21 0.24 143.74 7 98.19 2.001 29.14 88.17 0.24 0.00 0 0.00 0.000 0.000	26.68	2-methylhexane	HEXA2M	165.84	0.24	23.69	7	98.19	2.001
26.92 cyclohexene CYHEXE 33.34 0.24 5.56 6 82.15 1.568 27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 37.23 7 100.20 2.286 27.37 1,3-dimethylcyclopentane CPA13M 82.03 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 27.61 2,2,4-trimethylpentane PA224M 157.88 0.24 19.74 8 114.23 2.251 28.64 10.96 0.24 0.00 0 0.00 2.286 28.64 10.96 0.24 0.00 0 0.00 0.000 29.04 methylcyclohexane MECYHX 1006.21 0.24 143.74 7 98.19 2.001 29.41 extrimethylexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.51 2,4-diemthylhexane HEX24M 275.94 0.24 34.49 8 114.23 <td>26.77</td> <td>2,3-dimethylpentane</td> <td>PEN23M</td> <td>88.78</td> <td>0.24</td> <td>12.68</td> <td></td> <td>100.20</td> <td>2.286</td>	26.77	2,3-dimethylpentane	PEN23M	88.78	0.24	12.68		100.20	2.286
27.06 3-methylhexane + pentanal HEXA3M 260.63 0.24 37.23 7 100.20 2.266 27.37 1,3-dimethylcyclopentane CPA13M 82.03 0.24 11.72 7 98.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 27.61 2,2,4-trimethylpentane PA224M 157.88 0.24 19.74 8 114.23 2.251 28.64 N_HEPT 779.47 0.24 111.35 7 100.20 2.286 28.64 10.96 0.24 0.00 0 0.00 0.000 29.04 methylcyclohexane MECYHX 1006.21 0.24 143.74 7 98.19 2.001 29.14 88.17 0.24 143.74 7 98.19 2.001 29.51 2,4-diemthylhexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.54 C8 paraffin C8PA2 182.26 0.24 22.78 8 114.23 2.251	26.92	cyclohexene	CYHEXE	33.34	0.24	5.56	6	82.15	1.668
27.37 1,3-dimethylcyclopentane CPA13M 82.03 0.24 11.72 7 96.19 2.001 27.50 3-ethylpentane PA3ET 110.41 0.24 13.80 8 114.23 2.251 27.61 2,2,4-trimethylpentane PA224M 157.88 0.24 19.74 8 114.23 2.251 28.08 n-heptane N_HEPT 779.47 0.24 111.35 7 100.20 2.286 28.64 10.96 0.24 0.00 0 0.00 0.000 29.04 methylcyclohexane MECYHX 1006.21 0.24 143.74 7 98.19 2.001 29.14 8 11.23 2.5-diemthylhexane HEX25M 95.52 0.24 111.94 8 114.23 2.251 29.51 2,4-diemthylhexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.84 C8 paraffin C8PA2 182.26 0.24 34.49 8 114.23 2.251 29.99 4.82 0.24 0.00 <td< td=""><td>27.06</td><td>3-methylhexane + pentanal</td><td>HEXASM</td><td>260.63</td><td>0.24</td><td>37.23</td><td></td><td>100.20</td><td>2.200</td></td<>	27.06	3-methylhexane + pentanal	HEXASM	260.63	0.24	37.23		100.20	2.200
27.50 3-ethylpentane PA3E 1 110.41 0.24 13.80 6 114.23 2.251 27.61 2,2,4-trimethylpentane PA224M 157.88 0.24 19.74 8 114.23 2.251 28.08 n-heptane N_HEPT 7779.47 0.24 111.35 7 100.20 2.286 28.64 10.96 0.24 0.00 0 0.00 0.000 29.04 methylcyclohexane MECYHX 100621 0.24 143.74 7 98.19 2.001 29.14 88.17 0.24 143.74 7 98.19 2.001 0.000 0.000 0.000 29.43 2,5-diemthylhexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.51 2,4-diemthylhexane HEX24M 275.94 0.24 34.49 8 114.23 2.251 29.84 C8 paraffin C8PA2 182.26 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.000 <	27.37	1,3-dimethylcyclopentane	CPA13M	82.03	0.24	11.72		98.19	2.001
27.61 2,2,4-trimethylpentane PA224M 157.88 0.24 19.74 6 114.23 2.231 28.08 n-heptane N_HEPT 779.47 0.24 111.35 7 100.20 2.286 28.64 10.96 0.24 0.00 0 0.00 0.000 29.04 methylcyclohexane MECYHX 1006.21 0.24 143.74 7 98.19 2.001 29.14 88.17 0.24 0.00 0 0.00 0.000 29.43 2,5-diemthylhexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.51 2,4-diemthylhexane HEX24M 275.94 0.24 34.49 8 114.23 2.251 29.94 C8 paraffin C8PA2 182.26 0.24 22.78 8 114.23 2.251 29.99 4.82 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.00 0.000 30.23 2,3,-trimethylpentane PA234M <t< td=""><td>27.50</td><td>3-ethylpentane</td><td>PASET</td><td>110.41</td><td>0.24</td><td>13.80</td><td>0</td><td>114.23</td><td>2.201</td></t<>	27.50	3-ethylpentane	PASET	110.41	0.24	13.80	0	114.23	2.201
28.08 n-heptane N_HEP1 779.47 0.24 111.33 7 100.20 2.280 28.64 10.96 0.24 0.00 0 0.00 0.000 29.04 methylcyclohexane MECYHX 1006.21 0.24 143.74 7 98.19 2.001 29.14 88.17 0.24 0.00 0 0.00 0.000 29.43 2,5-diemthylhexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.51 2,4-diemthylhexane HEX24M 275.94 0.24 34.49 8 114.23 2.251 29.94 C8 paraffin C8PA2 182.26 0.24 22.78 8 114.23 2.251 29.99 4.82 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.00 0.000 30.23 2,3,-trimethylpentane PA234M 44.60 0.24 5.58 8 114.23 2.251 30.43 toluene TOLUE 804.94 0.24	27.61	2,2,4-trimethylpentane	PA224M	157.00	0.24	111.74		100.20	2.251
28.64 10.96 0.24 0.00 0 0.00 0.000 29.04 methylcyclohexane MECYHX 1006.21 0.24 143.74 7 98.19 2.001 29.14 88.17 0.24 0.00 0 0.00 0.000 29.43 2,5-diemthylhexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.51 2,4-diemthylhexane HEX24M 275.94 0.24 34.49 8 114.23 2.251 29.84 C8 paraffin C8PA2 182.26 0.24 22.78 8 114.23 2.251 29.99 4.82 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.00 0.000 30.23 2,3,-trimethylpentane PA234M 44.60 0.24 5.58 8 114.23 2.251 30.43 toluene TOLUE 804.94 0.24 114.99 7 92.14 1.144 30.61 2,3-dimethylhexane <t< td=""><td>28.08</td><td>n-neptane</td><td>N_HEP1</td><td>10.06</td><td>0.24</td><td>111.35</td><td></td><td>0.20</td><td>2.200</td></t<>	28.08	n-neptane	N_HEP1	10.06	0.24	111.35		0.20	2.200
29.04 methylcyclonexane MECYRX 1000.21 0.24 143.74 7 93.13 2.001 29.14 88.17 0.24 0.00 0 0.00 0.000 29.43 2,5-diemthylhexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.51 2,4-diemthylhexane HEX24M 275.94 0.24 34.49 8 114.23 2.251 29.94 C8 paraffin C8PA2 182.26 0.24 22.78 8 114.23 2.251 29.99 4.82 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.00 0.000 30.23 2,3,-trimethylpentane PA234M 44.60 0.24 5.58 8 114.23 2.251 30.43 toluene TOLUE 804.94 0.24 114.99 7 92.14 1.144 30.61 2,3-dimethylhexane HX23DM 163.34 0.24	28.64		MECYHY	1006.21	0.24	142.74	7	0.00	2 001
29.14 36.17 0.24 0.00 0 0.00 0 0.00 29.43 2,5-diemthylhexane HEX25M 95.52 0.24 11.94 8 114.23 2.251 29.51 2,4-diemthylhexane HEX24M 275.94 0.24 34.49 8 114.23 2.251 29.84 C8 paraffin C8PA2 182.26 0.24 22.78 8 114.23 2.251 29.99 4.82 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.00 0.000 30.23 2,3,-trimethylpentane PA234M 44.60 0.24 5.58 8 114.23 2.251 30.43 toluene TOLUE 804.94 0.24 114.99 7 92.14 1.144 30.61 2,3-dimethylhexane HX23DM 163.34 0.24 20.42 8 114.23 2.251 30.69 85.90 0.24 0.00 0 0.00 0.000 0.000 30.80 2-methylheptane	29.04	metnylcyclonexane	MECTHX	1000.21	0.24	143.74		90.19	0.000
29.43 2,5-diemtryinexane HEX25M 30.32 0.24 11.54 0 114.25 2.251 29.51 2,4-diemthylhexane HEX24M 275.94 0.24 34.49 8 114.23 2.251 29.84 C8 paraffin C8PA2 182.26 0.24 22.78 8 114.23 2.251 29.99 4.82 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.00 0.000 30.23 2,3,-trimethylpentane PA234M 44.60 0.24 5.58 8 114.23 2.251 30.43 toluene TOLUE 804.94 0.24 114.99 7 92.14 1.144 30.61 2,3-dimethylhexane HX23DM 163.34 0.24 20.42 8 114.23 2.251 30.69 85.90 0.24 0.00 0 0.000 0.000 30.80 2-methylheptane HEP2ME 959.85 0.24 106.65 9 128.26 2.223 30.87 4-met	29.14	0.5 diamthudhavana		00.17	0.24	11.04	8	114 23	2 251
29.51 2,4-diemitryinexane HEX24W 27.54 0.24 04.45 0 114.23 2.251 29.84 C8 paraffin C8PA2 182.26 0.24 22.78 8 114.23 2.251 29.99 4.82 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.000 0.000 30.23 2,3,-trimethylpentane PA234M 44.60 0.24 5.58 8 114.23 2.251 30.43 toluene TOLUE 804.94 0.24 114.99 7 92.14 1.144 30.61 2,3-dimethylhexane HX23DM 163.34 0.24 20.42 8 114.23 2.251 30.69 85.90 0.24 0.00 0 0.000 0.000 30.80 2-methylheptane HEP2ME 959.85 0.24 106.65 9 128.26 2.223 30.87 4-methylheptane HEP4ME 298.86 0.24 33.21 9 128.26 2.223	29.43			275.04	0.24	34.40	8	114.23	2 251
29.84 C8 parallin Cor A2 102.20 0.24 22.10 0 114.25 2.251 29.99 4.82 0.24 0.00 0 0.00 0.000 30.13 160.49 0.24 0.00 0 0.00 0.000 30.23 2,3,-trimethylpentane PA234M 44.60 0.24 5.58 8 114.23 2.251 30.43 toluene TOLUE 804.94 0.24 114.99 7 92.14 1.144 30.61 2,3-dimethylhexane HX23DM 163.34 0.24 20.42 8 114.23 2.251 30.69 85.90 0.24 0.00 0 0.00 0.000 30.80 2-methylheptane HEP2ME 959.85 0.24 106.65 9 128.26 2.223 30.87 4-methylheptane HEP4ME 298.86 0.24 33.21 9 128.26 2.223	29.51			182.26	0.24	22 78	8	114.23	2 251
29.99 7.02 0.24 0.00 0 0.000 30.13 160.49 0.24 0.00 0 0.000 30.23 2,3,-trimethylpentane PA234M 44.60 0.24 5.58 8 114.23 2.251 30.43 toluene TOLUE 804.94 0.24 114.99 7 92.14 1.144 30.61 2,3-dimethylhexane HX23DM 163.34 0.24 20.42 8 114.23 2.251 30.69 85.90 0.24 0.00 0 0.00 0.000 30.80 2-methylheptane HEP2ME 959.85 0.24 106.65 9 128.26 2.223 30.87 4-methylheptane HEP4ME 298.86 0.24 33.21 9 128.26 2.223	29.84			102.20	0.24	0.00	0	0.00	0,000
30.13 100.43 0.24 0.05 0 0.06 0.00 0.00	29.99			160 40	0.24	0.00		0.00	0.000
30.23 2,3,-timetrylpentatie Theorem 44.00 0.24 0.00 114.29 21.201 30.43 toluene TOLUE 804.94 0.24 114.99 7 92.14 1.144 30.61 2,3-dimethylhexane HX23DM 163.34 0.24 20.42 8 114.23 2.251 30.69 85.90 0.24 0.00 0 0.00 0.000 30.80 2-methylheptane HEP2ME 959.85 0.24 106.65 9 128.26 2.223 30.87 4-methylheptane HEP4ME 298.86 0.24 33.21 9 128.26 2.223	30.13	2.2 trimethyloentene	PA234M	44 60	0.24	5.50	8	114.23	2,251
30.43 lotterie House	30.23			804 04	0.24	114 99	7	92.14	1,144
30.69 85.90 0.24 0.00 0.00 0.00 30.80 2-methylheptane HEP2ME 959.85 0.24 106.65 9 128.26 2.223 30.87 4-methylheptane HEP4ME 298.86 0.24 33.21 9 128.26 2.223	30.43	2.2. dimothylbevano	HY23DM	163.2/	0.24	20 42	8	114 23	2.251
30.80 2-methylheptane HEP2ME 959.85 0.24 106.65 9 128.26 2.223 30.87 4-methylheptane HEP4ME 298.86 0.24 33.21 9 128.26 2.223	20.01	2,5-4111611911674116	TALODIN	85 0	0.24	0.00		0.00	0.000
30.87 4-methylheptane HFP4MF 298.86 0.24 33.21 9 128.26 2.223	20.09	2-methylbentane	HEP2ME	959.84	0.24	106.65	9	128.26	2.223
	20.00		HEPAME	298.86	0.24	33.21	9	128.26	2.223

Canister: DRI-H Flight 2, 7/15/97 14,000'

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_IN.	PPBV	C_N	MW	СТОН
31.00	C8 paraffin	C8PA3	111.17	0.24	13.90	8	114.23	2.251
31.11	3-methylheptane	HEP3ME	876.92	0.24	109.62	8	114.23	2.251
31.36			708.29	0.24	0.00	0	0.00	0.000
31.43	2,2,5-trimethylhexane	HEX225	288.28	0.24	32.03	9	128.26	2.223
31.55	octene-1	OCT1E	17.65	0.24	2.21	8	112.21	2.000
31.74	1,1-dimethylcyclohexane	CHX11M	245.16	0.24	30.65	8	112.21	2.000
31.83	······································		109.08	0.24	0.00	0	0.00	0.000
31.89			235.97	0.24	0.00	0	0.00	0.000
32.01			49.26	0.24	0.00	0	0.00	0.000
32.11	n-octane	N_OCT	2869.91	0.24	358.74	8	114.23	2.251
32.30			93.66	0.24	0.00	0	0.00	0.000
32.42	· · · · · · · · · · · · · · · · · · ·		248.31	0.24	0.00	0	0.00	0.000
32.54			3.63	0.24	0.00	0	0.00	0.000
32.68	· · · · · · · · · · · · · · · · · · ·		79.61	0.24	0.00	Ō	0.00	0.000
32 82	2.3.5-trimethylbexane	HEX235	47.71	0.24	5.30	9	128.26	2.223
32.90	2 4-dimethylheptane	HEP24D	94.36	0.24	10.48	9	128.26	2,223
33.05	4 4-dimethylheptane	HEP44D	249 48	0.24	27 72	9	128.26	2 223
33.10			28.49	0.24	0.00	0	0.00	0.000
33.13	2.6-dimethylheptane	HEP26D	705.43	0.24	78.38	a	128.26	2 223
33.27	2,0-0111611911601016		343 75	0.24	0.00		0.00	0.000
23.41	2 E dimethylheptene		1526.86	0.24	169.65		128.26	2 223
33.52	2,5-dimethylheptene	HEP22D	1084 61	0.24	120.51	9	128.26	2 223
33.72			276.00	0.24	20.31	0	126.20	2.001
33.83		COULET	270.90	0.24	30.77		0.00	0.000
33.91	· · · · · · · · · · · · · · · · · · ·		141.13	0.24	0.00		0.00	0.000
34.02		6707	83.50	0.24	125.05		106.16	1.000
34.13	ethylbenzene		11002.03	0.24	135.25		106.10	2.001
34.31		U9ULE3	0074.00	0.24	123.00	9	120.24	2.001
34.44	m- & p-xylene	MP_XTL	2974.02	0.24	3/1./3	0	100.10	1.250
34.56	2-methyloctane	UC 12ME	1/52.8/	0.24	194.70	9	120.20	2.223
34.71		COTOUS	64.95	0.24	0.00		100.00	0.000
34.83	3-methyloctane	OCT3ME	1613.06	0.24	1/9.23	9	120.20	2.223
35.00	C9 paraffin	COPAHI	164.30	0.24	18.26	9	128.20	2.223
35.08	styrene + heptanal	STYR	23.33	0.24	2.92	8	104.14	1.000
35.17			384.80	0.24	0.00		0.00	0.000
35.31	o-xylene	O_XYL	13/3.50	0.24	1/1.69	8	106.17	1.251
35.44			932.65	0.24	0.00		0.00	0.000
35.56	nonene-1	NONE1	751.20	0.24	83.47	9	126.24	2.001
35.66	C9 paraffin	C9PAR2	464.16	0.24	51.57	9	128.26	2.223
35.79	n-nonane	N_NON	5598.66	0.24	622.07	9	128.26	2.223
36.05	C9 olefin	C9OLE4	195.60	0.24	21./3	9	126.24	2.001
36.21			130.46	0.24	0.00	0	0.00	0.000
36.29			950.44	0.24	0.00	0	0.00	0.000
36.47	isopropylbenzene	IPRBZ	924.80	0.24	102.76	9	120.20	1.335
36.65			138.62	0.24	0.00	0	0.00	0.000
36.74	C9 paraffin 3	C9PA3	1474.81	0.24	163.87	9	128.26	2.223
36.86			178.41	0.24	0.00	0	0.00	0.000
37.05	isopropylcyclohexane	IPCYHX	3359.91	0.24	373.32	9	126.24	2.001
37.21	2,6-dimethyloctane	OCT26D	548.95	0.24	54.90	10	142.29	2.201
37.26			439.01	0.24	0.00	0	0.00	0.000
37.36	3,6-dimethyloctane	OCT36M	1167.83	0.24	116.78	10	142.29	2.201
37.49	n-propylbenzene	N_PRBZ	1243.03	0.24	138.11	9	120.20	1.335
37.60			222.48	0.24	0.00	0 0	0.00	0.000
37.72	m-ethyltoluene	M_ETOL	1880.37	0.24	208.93	9	120.20	1.335
27.70	p-ethyltoluene	P ETOL	1550.47	0.24	172.27	9	120.20	1.335

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
37.89			404.29	0.24	0.00	0	0.00	0.000
37.96	1,3,5-trimethylbenzene	BZ135M	2233.70	0.24	248.19	9	120.20	1.335
38.03	-		1419.59	0.24	0.00	0	0.00	0.000
38.17	C10 paraffin	C10P_A	1373.36	0.24	137.34	10	142.29	2.201
38.27			1377.29	0.24	0.00	0	0.00	0.000
38.37	o-ethyltoluene	O_ETOL	1288.94	0.24	143.22	9	120.20	1.335
38.48			175.71	0.24	0.00	0	0.00	0.000
38.58			672.10	0.24	0.00	0	0.00	0.000
38.69			736.84	0.24	0.00	0	0.00	0.000
38.87	1,2,4-trimethylbenzene	BZ124M	4467.51	0.24	496.39	9	120.20	1.335
39.00			712.30	0.24	0.00	0	0.00	0.000
39.08			518.61	0.24	0.00	0	0.00	0.000
39.17	n-decane	N_DEC	7372.22	0.24	737.22	10	142.29	2.201
39.29	C10 aromatic	C10AR1	275.50	0.24	27.55	10	134.22	1.401
39.39	isobutylbenzene	I_BUBZ	715.27	0.24	71.53	10	134.22	1.401
39.48	sec-butylbenzene	S_BUBZ	920.37	0.24	92.04	10	134.22	1.401
39.71	C10 aromatic 7	C10AR7	1064.71	0.24	106.47	10	134.22	1.401
39.84	1,2,3-trimethylbenzene	BZ123M	2699.21	0.24	299.91	9	120.20	1.335
39.97	C10 paraffin	C10P_C	2154.05	0.24	215.41	10	142.29	2.201
40.16	limonene	LIMON	812.90	0.24	81.29	10	136.24	1.601
40.35	indan	INDAN	1231.20	0.24	136.80	9	118.17	1.111
40.49	indene	INDENE	1990.84	0.24	221.20	9	116.15	0.888
40.61	diethylbenzene	DETBZ1	614.89	0.24	61.49	10	134.22	1.401
40.69	C10 aromatic	C10AR2	1263.10	0.24	126.31	10	134.22	1.401
40.87	1.4-diethylbenzene	DETBZ2	1984.86	0.24	198.49	10	134.22	1.401
41.02	1.2-diethylbenzene	DETBZ3	1155.65	0.24	115.57	10	134.22	1.401
41.12			1148.38	0.24	0.00	0	0.00	0.000
41.23	2-propyltoluene	TOL2PR	1613.02	0.24	161.30	10	134.22	1.401
41.34			255.22	0.24	0.00	0	0.00	0.000
41.45			1135.88	0.24	0.00	0	0.00	0.000
41.52	C10 aromatic	C10AR4	832.14	0.24	83.21	10	134.22	1.401
41.60	C10 aromatic	C10AR5	740.86	0.24	74.09	10	134.22	1.401
41.78	isopropyltoluene	IPRTOL	1209.98	0.24	121.00	10	134.22	1.401
41.93			562.05	0.24	0.00	0	0.00	0.000
42.08			845.66	0.24	0.00	0	0.00	0.000
42.15			464.00	0.24	0.00	0	0.00	0.000
42.28	n-undecane	N UNDE	4058.50	0.24	368.95	11	156.30	2.182
42.48	C10 aromatic	C10AR6	582.85	0.24	58.29	10	134.22	1.401
42.54			385.68	0.24	0.00	0	0.00	0.000
42.60			576.06	0.24	0.00	0	0.00	0.000
42.73	C11 paraffin	C11P_A	115.30	0.24	10.48	11	156.32	2.183
42.83	1,2,4,5-tetramethylbenzene	BZ1245	686.52	0.24	68.65	10	134.22	1.401
42.93	1,2,3,5-tetramethylbenzene	BZ1235	557.25	0.24	55.73	10	134.22	1.401
43.05	<u> </u>		318.68	0.24	0.00	0	0.00	0.000
43.18			291.51	0.24	0.00	0	0.00	0.000
43.24			314.04	0.24	0.00	0	0.00	0.000
43.32			380.67	0.24	0.00	0	0.00	0.000
43.52	C11 paraffin	C11P_B	406.03	0.24	36.91	11	156.32	2.183
43.64			520.85	0.24	0.00	0	0.00	0.000
43.76			504.93	0.24	0.00	0	0.00	0.000
43.95	1,2,3,4-trimethylbenzene	BZ1234	880.40	0.24	88.04	10	134.22	1.401
44.07	<u></u> ,		316.32	0.24	0.00	0	0.00	0.000
44.19			252.74	0.24	0.00	0	0.00	0.000
44.27			437.31	0.24	0.00	0	0.00	0.000

Canister: DRI-H Flight 2, 7/15/97 14,000'

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
44.40			199.60	0.24	0.00	0	0.00	0.000
44.46	C11 aromatic	C11AR1	82.24	0.24	7.48	11	148.22	1.453
44.56	C11 aromatic	C11AR3	95.62	0.24	8.69	11	148.22	1.453
44.75			79.70	0.24	0.00	0	0.00	0.000
44.92	naphthalene	NAPHTH	385.94	0.24	38.59	10	128.16	0.800
45.05			145.80	0.24	0.00	0	0.00	0.000
45.18	n-dodecane	N_DODE	544.90	0.24	45.41	12	170.34	2.168
45.28			158.87	0.24	0.00	0	0.00	0.000
45.39			36.45	0.24	0.00	0	0.00	0.000
45.49			45.84	0.24	0.00	0	0.00	0.000
45.55			27.56	0.24	0.00	0	0.00	0.000
45.63			71.35	0.24	0.00	0	0.00	0.000
45.73			17.26	0.24	0.00	0	0.00	0.000
45.87			71.48	0.24	0.00	0	0.00	0.000
	Total C3		18.64	0.02%	·····			
	Total C4		47.76	0.04%				
	Total C5		150.05	0.13%				
	Total C6		364.20	0.33%				
	Total C7		3566.75	3.19%				
	Total C8		12953.60	11.58%				
	Total C9		27904.67	24.94%				
	Total C10		41390.85	36.99%				
	Total C11		21141.64	18.89%				
	Total C12		4354.31	3.89%	l			

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJP	PBV	C_N	MW	СТОН
3.02			5.97	0.43	0.00	0	0.00	0.000
3.74			1.02	0.43	0.00	0	0.00	0.000
7.02	propane	N_PROP	2.31	0.43	0.77	3	44.10	2.669
10.88	isobutane	I_BUTA	4.81	0.43	1.20	4	58.12	2.500
12.99	n-butane	N_BUTA	11.15	0.43	2.79	4	58.12	2.500
14.66	c-2-butene	C2BUTE	1.57	0.43	0.39	4	56.11	2.001
16.28	3-methyl-1-butene	B1E3ME	1.81	0.43	0.36	5	70.13	2.000
16.63			3.35	0.43	0.00	0	0.00	0.000
17.20	isopentane	IPENTA	25.79	0.43	5.16	5	72.15	2.401
17.71			3.73	0.43	0.00	0	0.00	0.000
17.89	1-pentene	PENTE1	3.69	0.43	0.74	5	70.13	2.000
18.16			2.49	0.43	0.00	0	0.00	0.000
18.42	2-methyl-1-butene	B1E2M	2.25	0.43	0.45	5	70.13	2.000
18.63	n-pentane	N_PENT	16.43	0.43	3.29	5	72.15	2.401
19.08	t-2-pentene	T2PENE	1.46	0.43	0.29	5	70.13	2.000
19.47	c-2-pentene	C2PENE	2.94	0.43	0.59	5	70.13	2.000
19.69	2-methyl-2-butene	B2E2M	2.43	0.43	0.49	5	70.13	2.000
19.84			2.51	0.43	0.00	0	0.00	0.000
20.02			2.61	0.43	0.00	0	0.00	0.000
20.17			2.91	0.43	0.00	0	0.00	0.000
20.32			2.33	0.43	0.00	0	0.00	0.000
20.40	2,2-dimethylbutane	BU22DM	4.86	0.43	0.81	6	86.17	2.333
20.61			2.69	0.43	0.00	0	0.00	0.000
20.74			2.35	0.43	0.00	0	0.00	0.000
20.87			2.87	0.43	0.00	0	0.00	0.000
21.00			2.40	0.43	0.00	0	0.00	0.000
21.17	cyclopentene	CPENTE	1.14	0.43	0.23	5	68.11	1.599
21.47	4-methyl-1-pentene	P1E4ME	4.57	0.43	0.76	6	84.16	2.001
21.74	cyclopentane	CPENTA	6.49	0.43	1.30	5	70.13	2.000
21.89	2,3-dimethylbutane	BU23DM	7.42	0.43	1.24	6	86.17	2.333
22.13	2-methylpentane	PENA2M	19.32	0.43	3.22	6	86.17	2.333
22.29	4.1		2.76	0.43	0.00	0	0.00	0.000
22.51			2.99	0.43	0.00	0	0.00	0.000
22.80	3-methylpentane	PENA3M	11.37	0.43	1.90	6	86.17	2.333
23.05	1-hexene	HEX1E	4.01	0.43	0.67	6	84.16	2.001
23.24	C6 olefin	C6OLE1	3.75	0.43	0.63	6	84.16	2.001
23.42			2.12	0.43	0.00	0	0.00	0.000
23.62	n-hexane	N_HEX	31.91	0.43	5.32	6	86.17	2.333
23.90			1.85	0.43	0.00	0	0.00	0.000
24.20	c-3-hexene	C3HEXE	2.13	0.43	0.36	6	84.16	2.001
24.34			1.04	0.43	0.00	0	0.00	0.000
24.47	trans-3-methyl-2-pentene	P2E3MT	1.01	0.43	0.17	6	84.16	2.001
24.73	• • • • • • • • • • • • • • • • • • • •		2.54	0.43	0.00	0	0.00	0.000
24.82	methylcyclopentane	MCYPNA	30.64	0.43	5.11	6	84.16	2.001
25.02	2,4-dimethylpentane	PEN24M	4.90	0.43	0.70	7	100.20	2.286
25.90	benzene	BENZE	17.10	0.43	2.85	6	78.11	1.000
26.15	3,3-dimethylpentane	PEN33M	3.31	0.43	0.47	7	100.20	2.286
26.32	cyclohexane	CYHEXA	51.52	0.43	8.59	6	84.16	2.001
26.68	2-methylhexane	HEXA2M	55.65	0.43	7.95	7	98.19	2.001
26.77	2,3-dimethylpentane	PEN23M	29.18	0.43	4.17	7	100.20	2.286
26.92	cyclohexene	CYHEXE	10.76	0.43	1.79	6	82.15	1.668
27.06	3-methylhexane + pentanal	HEXA3M	89.24	0.43	12.75	7	100.20	2.286
27.37	1,3-dimethylcyclopentane	CPA13M	27.30	0.43	3.90	7	98.19	2.001
27.50	3-ethylpentane	PA3ET	37.34	0.43	4.67	8	114.23	2.251

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	CTOH
27.61	2,2,4-trimethylpentane	PA224M	53.67	0.43	6.71	8	114.23	2.251
27.85	C7 olefin	C7OLE2	1.16	0.43	0.17	7	98.19	2.001
28.08	n-heptane	N_HEPT	286.45	0.43	40.92	7	100.20	2.286
28.48	C8 olefin	C8OLE3	2.35	0.43	0.29	8	112.21	2.000
28.63			2.67	0.43	0.00	0	0.00	0.000
28.81			1.95	0.43	0.00	0	0.00	0.000
29.04	methylcyclohexane	MECYHX	401.06	0.43	57.29	7	98.19	2.001
29.14	C8 paraffin	C8PA1	37.12	0.43	4.64	8	114.23	2.251
29.43	2,5-diemthylhexane	HEX25M	39.67	0.43	4.96	8	114.23	2.251
29.51	2,4-diemthylhexane	HEX24M	116.52	0.43	14.57	8	114.23	2.251
29.84	C8 paraffin	C8PA2	79.33	0.43	9.92	8	114.23	2.251
30.13			69.38	0.43	0.00	0	0.00	0.000
30.23	2,3,-trimethylpentane	PA234M	20.63	0.43	2.58	8	114.23	2.251
30.43	toluene	TOLUE	336.88	0.43	48.13	7	92.14	1.144
30.61	2,3-dimethylhexane	HX23DM	76.02	0.43	9.50	8	114.23	2.251
30.69			39.33	0.43	0.00	0	0.00	0.000
30.80	2-methylheptane	HEP2ME	453.20	0.43	50.36	9	128.26	2.223
30.87	4-methylheptane	HEP4ME	144.19	0.43	16.02	9	128.26	2.223
30.99	C8 paraffin	C8PA3	52.62	0.43	6.58	8	114.23	2.251
31.11	3-methylheptane	НЕРЗМЕ	427.61	0.43	53.45	8	114.23	2.251
31.35			348.02	0.43	0.00		0.00	0.000
31.43	2,2,5-trimethylhexane	HEX225	142.06	0.43	15.78	9	128.26	2.223
31.55	octene-1	OCITE	9.15	0.43	1.14	8	112.21	2.000
31.74	1,1-dimethylcyclohexane	CHX11M	121.26	0.43	15.16	8	112.21	2.000
31.83			54.00	0.43	0.00	0	0.00	0.000
31.88			117.39	0.43	0.00		0.00	0.000
32.01		NOOT	24.41	0.43	194.40		114.02	0.000
32.11	n-octane		14/5.92	0.43	104.49		0.00	2.251
32.30			40.04	0.43	0.00		0.00	0.000
32.42			129.00	0.43	0.00		0.00	0.000
32.54			1.94	0.43	0.00		0.00	0.000
32.68			42.23	0.43	2.83	a	128.26	2 223
32.81	2,3,5-mmethymexane		51.62	0.43	5 74	q	128.26	2 223
32.90	2,4-dimethylheptane		135.78	0.40	15.09	g	128.26	2 223
33.04			15.93	0.43	0.00	Ŏ	0.00	0.000
22.27	2.6-dimethylbentane	HEP26D	388.28	0.43	43.14	9	128.26	2.223
33.40	z,o-dimentymeptane		186.14	0.43	0.00	0	0.00	0.000
33.52	2 5-dimethylhentane	HEP25D	841.75	0.43	93.53	9	128.26	2.223
33.72	3 3-dimethylheptane	HEP33D	605.47	0.43	67.27	9	128.26	2.223
33.83	C9 olefin	C9OLE1	155.89	0.43	17.32	9	126.24	2.001
33.91			78.43	0.43	0.00	0	0.00	0.000
34.01			46.99	0.43	0.00	0	0.00	0.000
34.13	ethvibenzene	ETBZ	581.06	0.43	72.63	8	106.16	1.250
34.31	C9 olefin	C9OLE3	644.33	0.43	71.59	9	126.24	2.001
34.44	m- & p-xylene	MP_XYL	1621.83	0.43	202.73	8	106.16	1.250
34.56	2-methyloctane	OCT2ME	1001.03	0.43	111.23	9	128.26	2.223
34.71			37.13	0.43	0.00	0 0	0.00	0.000
34.83	3-methyloctane	OCT3ME	921.83	0.43	102.43	9	128.26	2.223
34.99	C9 paraffin	C9PAR1	94.23	0.43	10.47	9	128.26	2.223
35.08	styrene + heptanal	STYR	13.95	0.43	1.74	8	104.14	1.000
35.17			222.95	0.43	0.00) 0	0.00	0.000
35.31	o-xylene	O_XYL	757.80	0.43	94.73	8 8	106.17	1.251
35.44			537.50	0.43	0.00	00	0.00	0.000

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
35.55	nonene-1	NONE1	438.63	0.43	48.74	9	126.24	2.001
35.65	C9 paraffin 2	C9PAR2	270.18	0.43	30.02	9	128.26	2.223
35.79	n-nonane	N_NON	3214.95	0.43	357.22	9	128.26	2.223
36.05	C9 olefin	C9OLE4	114.10	0.43	12.68	9	126.24	2.001
36.28			634.00	0.43	0.00	0	0.00	0.000
36.47	isopropylbenzene	IPRBZ	531.99	0.43	59.11	9	120.20	1.335
36.65			81.32	0.43	0.00	0	0.00	0.000
36.74	C9 paraffin 3	C9PA3	857.99	0.43	95.33	9	128.26	2.223
36.86			103.81	0.43	0.00	0	0.00	0.000
37.05	isopropylcyclohexane	IPCYHX	1942.43	0.43	215.83	9	126.24	2.001
37.20	2.6-dimethyloctane	OCT26D	322.26	0.43	32.23	10	142.29	2.201
37.26			249.12	0.43	0.00	0	0.00	0.000
37.36	3.6-dimethyloctane	OCT36M	672.23	0.43	67.22	10	142.29	2.201
37.49	n-propylbenzene	N PRBZ	707.37	0.43	78.60	9	120.20	1.335
37.60			129.86	0.43	0.00	0	0.00	0.000
37.72	m-ethyltoluene	M ETOL	1051.99	0.43	116.89	9	120.20	1.335
37 79	n-ethyltoluene	P FTOI	856.82	0.43	95.20	9	120.20	1.335
37.80	p carlynoidene		231.33	0.43	0.00	0	0.00	0.000
37.05	1.3.5-trimethylbenzene	B7135M	1235.99	0.43	137.33	9	120.20	1 335
38.03	1,5,5-timetryibenzene		781 47	0.43	0.00		0.00	0.000
38.17	C10 paraffin	C10P A	794 12	0.43	79.41	10	142 29	2 201
28.07			760.31	0.43	0.00		0.00	0.000
38.37	o-ethyltoluene	O FTOI	711 19	0.40	79.02	9	120.20	1.335
20.37	0-eti iyitoidene	0_2102	101 79	0.43	0.00	- O	0.00	0.000
20.40			382 50	0.40	0.00		0.00	0.000
30.57		· · · · · · · · · · · · · · · · · · ·	427.61	0.43	0.00		0.00	0.000
30.00	1.0.4 trimothylbonzono	07104M	2412.01	0.43	268.00	<u>a</u>	120.20	1 335
30.07	1,2,4-thmethybenzene	DZ 1241VI	2412.01	0.43	200.00		0.00	0.000
39.00			288.00	0.43	0.00		0.00	0.000
39.08	n decene	N DEC	200.99	0.43	370.45	10	142 20	2 201
39.17	n-decane		151 22	0.43	15 13	10	134 22	1 401
39.29			303.53	0.43	30.35	10	134 22	1 401
39.39			509.03	0.43	50.80	10	134.22	1.401
39.47			500.95	0.43	56.03	10	124.22	1.401
39.71			1000.15	0.43	155.15		104.22	1.401
39.84		DZ123M	1074.50	0.43	107.45	10	142 20	2 201
39.97	C10 paramin		1074.50	0.43	107.45	10	126.23	1 601
40.16			420.00	0.43	42.09		110.24	1.001
40.35	Indan		039.30	0.43	111.04	9	110.17	0.000
40.49			999.00	0.43	20.05	10	124.00	1 401
40.60	diethylbenzene	DEIBZI	302.54	0.43	30.25	10	104.22	1.401
40.69	C10 aromatic	C10AH2	619.49	0.43	01.90	10	134.22	1.401
40.87	1,4-diethylbenzene	DETBZ2	941.42	0.43	94.14	10	134.22	1.401
41.02	1,2-diethylbenzene	DETBZ3	539.23	0.43	53.92	10	134.22	1.401
41.12			543.92	0.43	0.00	0	0.00	0.000
41.23	2-propyltoluene	TOL2PR	729.46	0.43	/2.95	10	134.22	1.401
41.34			122.88	0.43	0.00	0	0.00	0.000
41.45		L	542.53	0.43	0.00	0	0.00	0.000
41.52	C10 aromatic	C10AR4	370.92	0.43	37.09	10	134.22	1.401
41.59	C10 aromatic	C10AR5	326.57	0.43	32.66	10	134.22	1.401
41.77	isopropyltoluene	IPRTOL	551.12	0.43	55.11	10	134.22	1.401
41.93			264.39	0.43	0.00		0.00	0.000
42.07			593.55	0.43	0.00		0.00	0.000
42.28	n-undecane	N_UNDE	1602.17	0.43	145.65	11	156.30	2.182
42.47	C10 aromatic	C10AR6	251.67	0.43	25.17	<u> 10</u>	134.22	1.401

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	CTOH
42.53			166.14	0.43	0.00	0	0.00	0.000
42.59			241.94	0.43	0.00	0	0.00	0.000
42.72	C11 paraffin	C11P_A	51.67	0.43	4.70	11	156.32	2.183
42.83	1,2,4,5-tetramethylbenzene	BZ1245	272.31	0.43	27.23	10	134.22	1.401
42.93	1,2,3,5-tetramethylbenzene	BZ1235	223.82	0.43	22.38	10	134.22	1.401
43.05			135.84	0.43	0.00	0	0.00	0.000
43.18			111.59	0.43	0.00	0	0.00	0.000
43.24			138.29	0.43	0.00	0	0.00	0.000
43.32			150.48	0.43	0.00	0	0.00	0.000
43.52	C11 paraffin	C11P_B	154.40	0.43	14.04	11	156.32	2.183
43.64			198.21	0.43	0.00	0	0.00	0.000
43.76			198.93	0.43	0.00	0	0.00	0.000
43.95	1,2,3,4-trimethylbenzene	BZ1234	313.49	0.43	31.35	10	134.22	1.401
44.07			110.82	0.43	0.00	0	0.00	0.000
44.19			85.54	0.43	0.00	0	0.00	0.000
44.27			153.94	0.43	0.00	0	0.00	0.000
44.40			101.99	0.43	0.00	0	0.00	0.000
44.56	C11 aromatic	C11AR3	39.30	0.43	3.57	11	148.22	1.453
44.75			32.29	0.43	0.00	0	0.00	0.000
44.92	naphthalene	NAPHTH	126.04	0.43	12.60	10	128.16	0.800
45.05			48.47	0.43	0.00	0	0.00	0.000
45.17	n-dodecane	N_DODE	159.64	0.43	13.30	12	170.34	2.168
45.28			57.37	0.43	0.00	0	0.00	0.000
45.39			14.82	0.43	0.00	0	0.00	0.000
45.48			16.61	0.43	0.00	0	0.00	0.000
45.63			22.72	0.43	0.00	0	0.00	0.000
45.73			8.01	0.43	0.00	0	0.00	0.000
45.87			25.78	0.43	0.00	0	0.00	0.000
							_	
	Total C3		9.30	0.02%				
	Total C4		17.53	0.03%			<u> </u>	
	Total C5		91.90	0.16%				
	Total C6		141.96	0.25%				
	Total C7		1412.73	2.48%				
	Total C8		6549.35	11.49%				
	Total C9		15913.64	27.91%				
	Total C10		22133.75	38.82%				
	Total C11		9224.52	16.18%		L		
	Total C12		1515.76	2.66%				

Canister: DRI-R Flight 3, 7/16/97 Taxi

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJPPBV		C_N	MW	СТОН
3.03			5.94	0.28	0.00	0	0.00	0.000
3.76			1.23	0.28	0.00	0	0.00	0.000
7.02	propane	N_PROP	2.12	0.28	0.71	3	44.10	2.669
10.89	isobutane	I_BUTA	4.68	0.28	1.17	4	58.12	2.500
12.99	n-butane	N_BUTA	9.12	0.28	2.28	4	58.12	2.500
15.82			4.23	0.28	0.00	0	0.00	0.000
16.43	3-methyl-1-butene	B1E3ME	3.53	0.28	0.71	5	70.13	2.000
17.20	isopentane	IPENTA	23.14	0.28	4.63	5	72.15	2.401
17.87	1-pentene	PENTE1	4.55	0.28	0.91	5	70.13	2.000
18.14			2.45	0.28	0.00	0	0.00	0.000
18.43	2-methyl-1-butene	B1E2M	1.92	0.28	0.38	5	70.13	2.000
18.63	n-pentane	N_PENT	14.32	0.28	2.86	5	72.15	2.401
19.18	t-2-pentene	T2PENE	3.93	0.28	0.79	5	70.13	2.000
19.54	c-2-pentene	C2PENE	2.60	0.28	0.52	5	70.13	2.000
19.69	2-methyl-2-butene	B2E2M	2.60	0.28	0.52	5	70.13	2.000
19.89			1.61	0.28	0.00	0	0.00	0.000
20.08			1.56	0.28	0.00	0	0.00	0.000
20.40	2,2-dimethylbutane	BU22DM	2.07	0.28	0.35	6	<u>86</u> .17	2.333
20.68			2.07	0.28	0.00	0	0.00	0.000
20.96			4.33	0.28	0.00	0	0.00	0.000
21.09			1.33	0.28	0.00	0	0.00	0.000
21.23	cyclopentene	CPENTE	2.79	0.28	0.56	5	68.11	1.599
21.36			1.35	0.28	0.00	0	0.00	0.000
21.46	4-methyl-1-pentene	P1E4ME	2.02	0.28	0.34	6	84.16	2.001
21.58	3-methyl-1-pentene	P1E3ME	1.23	0.28	0.21	6	84.16	2.001
21.74	cyclopentane	CPENTA	3.70	0.28	0.74	5	<u>70.13</u>	2.000
21.88	2,3-dimethylbutane	BU23DM	5.26	0.28	0.88	6	86.17	2.333
22.13	2-methylpentane	PENA2M	17.58	0.28	2.93	6	86.17	2.333
22.28			2.69	0.28	0.00	0	0.00	0.000
22.50			2.37	0.28	0.00	0	0.00	0.000
22.69	2,2-dimethylpentane	PEN22M	1.04	0.28	0.15	7	100.20	2.286
22.80	3-methylpentane	PENA3M	11.31	0.28	1.89	6	86.17	2.333
23.07	1-hexene	HEX1E	1.27	0.28	0.21	6	84.16	2.001
23.17	C6 olefin	C6OLE1	0.50	0.28	0.08	6	84.16	2.001
23.62	n-hexane	N_HEX	27.53	0.28	4.59	6	86.17	2.333
23.87	t-2-hexene	T2HEXE	1.29	0.28	0.22	6	84.16	2.001
24.13	c-3-hexene	C3HEXE	1.43	0.28	0.24	6	84.16	2.001
24.74			2.10	0.28	0.00	0	0.00	0.000
24.82	methylcyclopentane	MCYPNA	28.13	0.28	4.69	6	84.16	2.001
25.02	2,4-dimethylpentane	PEN24M	4.01	0.28	0.57	7	100.20	2.286
25.42			0.69	0.28	0.00	0	0.00	0.000
25.90	benzene	BENZE	16.24	0.28	2.71	6	78.11	1.000
26.14	3,3-dimethylpentane	PEN33M	3.71	0.28	0.53	7	100.20	2.286
26.32	cyclohexane	CYHEXA	48.55	0.28	8.09	6	84.16	2.001
26.68	2-methylhexane	HEXA2M	51.86	0.28	7.41	7	98.19	2.001
26.77	2,3-dimethylpentane	PEN23M	28.22	0.28	4.03		100.20	2.286
26.92	cyclohexene	CYHEXE	10.45	0.28	1.74	6	82.15	1.668
27.06	3-methylhexane + pentanal	HEXA3M	83.61	0.28	11.94		100.20	2.286
27.37	1,3-dimethylcyclopentane	CPA13M	26.21	0.28	3.74	7	98.19	2.001
27.50	3-ethylpentane	PASET	35.27	0.28	4.41	8	114.23	2.251
27.61	2,2,4-trimethylpentane	PA224M	50.20	0.28	6.28	8	114.23	2.251
28.08	n-neptane	N_HEPT	268.05	0.28	38.29		100.20	2.286
28.81	C8 olefin	CBOLE1	1.07	0.28	0.13	8	112.21	2.000
I 29.04	methylcyclohexane		381.91	0.28	54.56	7	98.19	2.001

.

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
29.14	C8 paraffin	C8PA1	32.04	0.28	4.01	8	114.23	2.251
29.43	2,5-diemthylhexane	HEX25M	37.72	0.28	4.72	8	114.23	2.251
29.51	2,4-diemthylhexane	HEX24M	110.34	0.28	13.79	8	114.23	2.251
29.84	C8 paraffin	C8PA2	76.49	0.28	9.56	8	114.23	2.251
30.13			66.86	0.28	0.00	0	0.00	0.000
30.23	2,3,-trimethylpentane	PA234M	19.91	0.28	2.49	8	114.23	2.251
30.43	toluene	TOLUE	332.94	0.28	47.56	7	92.14	1.144
30.61	2,3-dimethylhexane	HX23DM	74.67	0.28	9.33	8	114.23	2.251
30.69			38.38	0.28	0.00	0	0.00	0.000
30.80	2-methylheptane	HEP2ME	446.70	0.28	49.63	9	128.26	2.223
30.87	4-methylheptane	HEP4ME	141.03	0.28	15.67	9	128.26	2.223
30.99	C8 paraffin	C8PA3	52.16	0.28	6.52	8	114.23	2.251
31.11	3-methylheptane	HEP3ME	421.84	0.28	52.73	8	114.23	2.251
31.35			344.15	0.28	0.00	0	0.00	0.000
31.43	2,2,5-trimethylhexane	HEX225	139.75	0.28	15.53	9	128.26	2.223
31.55	octene-1	OCT1E	9.53	0.28	1.19	8	112.21	2.000
31.74	1,1-dimethylcyclohexane	CHX11M	119.70	0.28	14.96	8	112.21	2.000
31.83			53.79	0.28	0.00	0	0.00	0.000
31.89			116.11	0.28	0.00	0	0.00	0.000
32.01			24.22	0.28	0.00	0	0.00	0.000
32.11	n-octane	N_OCT	1485.17	0.28	185.65	8	114.23	2.251
32.30			49.03	0.28	0.00	0	0.00	0.000
32.42			128.72	0.28	0.00	0	0.00	0.000
32.54			2.25	0.28	0.00	0	0.00	0.000
32.68		· · · · · · · · · · · · · · · · · · ·	42.34	0.28	0.00	0	0.00	0.000
32.81	2,3,5-trimethylhexane	HEX235	25.88	0.28	2.88	9	128.26	2.223
32.90	2,4-dimethylheptane	HEP24D	52.18	0.28	5.80	9	128.26	2.223
33.05	4,4-dimethylheptane	HEP44D	138.35	0.28	15.37	9	128.26	2.223
33.19			15.90	0.28	0.00	0	0.00	0.000
33.27	2,6-dimethylheptane	HEP26D	398.65	0.28	44.29	9	128.26	2.223
33.41			189.04	0.28	0.00	0	0.00	0.000
33.52	2,5-dimethylheptane	HEP25D	860.48	0.28	95.61	9	128.26	2.223
33.72	3,3-dimethylheptane	HEP33D	620.83	0.28	68.98	9	128.26	2.223
33.83	C9 olefin	C9OLE1	159.45	0.28	17.72	9	126.24	2.001
33.91			81.04	0.28	0.00	0	0.00	0.000
34.02			48.10	0.28	0.00	0	0.00	0.000
34.13	ethylbenzene	ETBZ	610.27	0.28	76.28	8	106.16	1.250
34.31	C9 olefin	C9OLE3	674.41	0.28	74.93	9	126.24	2.001
34.44	m- & p-xylene	MP_XYL	1734.98	0.28	216.87	8	106.16	1.250
34.56	2-methyloctane	OCT2ME	1074.63	0.28	119.40	9	128.26	2.223
34.71			38.78	0.28	0.00	0	0.00	0.000
34.83	3-methyloctane	OCT3ME	985.58	0.28	109.51	9	128.26	2.223
35.00	C9 paraffin	C9PAR1	99.17	0.28	11.02	9	128.26	2.223
35.08	styrene + heptanal	STYR	13.96	0.28	1.75	8	104.14	1.000
35.17			236.36	0.28	0.00	0	0.00	0.000
35.31	o-xylene	O_XYL	827.95	0.28	103.49	8	106.17	1.251
35.44			578.09	0.28	0.00	0	0.00	0.000
35.56	nonene-1	NONE1	476.24	0.28	52.92	9	126.24	2.001
35.66	C9 paraffin	C9PAR2	295.26	0.28	32.81	9	128.26	2.223
35.79	n-nonane	N_NON	3623.52	0.28	402.61	9	128.26	2.223
36.05	C9 olefin	C9OLE4	125.34	0.28	13.93	9	126.24	2.001
36.22			81.74	0.28	0.00	0	0.00	0.000
36.29			615.76	0.28	0.00	0	0.00	0.000
36.47	isopropylbenzene	IPRBZ	600.67	0.28	66.74	9	120.20	1.335

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C N	MŴ	СТОН
36.65		1	90.72	0.28	0.00	0	0.00	0.000
36.74	C9 paraffin 3	C9PA3	968.74	0.28	107.64	9	128.26	2.223
36.86	•		121.13	0.28	0.00	0	0.00	0.000
37.05	isopropylcyclohexane	IPCYHX	2255.16	0.28	250.57	9	126.24	2.001
37.21	2.6-dimethyloctane	OCT26D	370.47	0.28	37.05	10	142.29	2.201
37.26			296.19	0.28	0.00	0	0.00	0.000
37.36	3.6-dimethyloctane	ОСТЗ6М	796.02	0.28	79.60	10	142.29	2.201
37.49	n-propylbenzene	N PBBZ	833.49	0.28	92.61	9	120.20	1.335
37.60		·· <u>_</u> · ··	149.18	0.28	0.00	0	0.00	0.000
37.72	m-ethyltoluene	M FTOL	1250 24	0.28	138.92	9	120 20	1 335
37.79	p-ethyltoluene	P FTOI	1080.07	0.28	120.01	9	120.20	1 335
37.89	polityholdono		288.87	0.28	0.00	0	0.00	0.000
37.96	1.3.5-trimethylbenzene	BZ135M	1567.65	0.28	174 18	q	120.20	1.335
38.03	1,0,0-11110119100120110	DETOON	992.60	0.28	0.00	0	0.00	0.000
38.17	C10 paraffin		953.00	0.20	95 38	10	142 20	2 201
38.17			955.75	0.20	0.00	10	0.00	0.000
30.27	a athyltoluono		901.13	0.20	0.00	0	120.20	1 335
30.37	o-ethylloluene		121 21	0.20	90.12	9	0.00	0.000
30.40			474.00	0.20	0.00		0.00	0.000
30.50	······		<u>4/4.90</u> 500.74	0.20	0.00		0.00	0.000
38.69	4.0.4 4	DZIOANA	523.74	0.20	0.00		100.00	1.225
38.87	1,2,4-trimetnyibenzene	BZ124M	3109.03	0.20	352.20	9	120.20	1.335
39.00			507.01	0.28	0.00	0	0.00	0.000
39.08		N 050	3/2./2	0.28	0.00	0	0.00	0.000
39.17	n-decane	N_DEC	5392.87	0.28	539.29	10	142.29	2.201
39.29	C10 aromatic	C10AH1	202.60	0.28	20.26	10	134.22	1.401
39.39	isobutylbenzene	I_BUBZ	512.92	0.28	51.29	10	134.22	1.401
39.48	sec-butylbenzene	S_BUBZ	665.29	0.28	66.53	10	134.22	1.401
39.72	C10 aromatic 7	C10AR7	775.17	0.28	77.52	10	134.22	1.401
39.85	1,2,3-trimethylbenzene	BZ123M	1960.03	0.28	217.78	9	120.20	1.335
39.97	C10 paraffin	C10P_C	1581.68	0.28	158.17	10	142.29	2.201
40.16	limonene	LIMON	601.15	0.28	60.12	10	136.24	1.601
40.35	indan	INDAN	910.31	0.28	101.15	9	118.17	1.111
40.50	indene	INDENE	1473.36	0.28	163.71	9	116.15	0.888
40.61	diethylbenzene	DETBZ1	453.18	0.28	45.32	10	134.22	1.401
40.70	C10 aromatic	C10AR2	936.59	0.28	93.66	10	134.22	1.401
40.87	1,4-diethylbenzene	DETBZ2	1467.83	0.28	146.78	10	134.22	1.401
41.02	1,2-diethylbenzene	DETBZ3	854.18	0.28	85.42	10	134.22	1.401
41.12			850.78	0.28	0.00	0	0.00	0.000
41.24	2-propyltoluene	TOL2PR	1190.22	0.28	119.02	10	134.22	1.401
41.34			190.12	0.28	0.00	0	0.00	0.000
41.45			872.80	0.28	0.00	0	0.00	0.000
41.52	C10 aromatic	C10AR4	595.21	0.28	59.52	10	134.22	1.401
41.60	C10 aromatic	C10AR5	544.11	0.28	54.41	10	134.22	1.401
41.78	isopropyltoluene	IPRTOL	904.62	0.28	90.46	10	134.22	1.401
41.93			415.57	0.28	0.00	0	0.00	0.000
42 08		1	640.59	0.28	0.00	0	0.00	0.000
42 15	· · · · · · · · · · · · · · · ·		337.34	0.28	0.00	0	0.00	0.000
42.13	n-undecane	N UNDF	2973.88	0.28	270.35	11	156.30	2.182
42.20	C10 aromatic	C10AR6	437.32	0.28	43.73	10	134.22	1.401
A2 54			286.03	0.28	0.00	0	0.00	0.000
42.54		+	505.90	0.28	0.00	to	0.00	0.000
42.00	1.2.4.5.tetramethylbenzene	871245	507.30	1 28	50 74	10	134.22	1.401
42.03	1.2.3 5 totramothylbonzono	B71225	A12 11	0.20	<u>41 31</u>	10	134 22	1.401
42.93		021200	234 05	0.20	0.00		0.00	0.000
1 43.00		1	207.30	0.20	0.00	1	1 0.00	

Canister	: DRI-J	
Flight 3,	7/16/97	10,000'

.

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJPPBV		C_N	MW	СТОН
43.19			210.87	0.28	0.00	0	0.00	0.000
43.24			238.07	0.28	0.00	0	0.00	0.000
43.32	·		279.37	0.28	0.00	0	0.00	0.000
43.52	C11 paraffin	C11P_B	300.22	0.28	27.29	11	156.32	2.183
43.64			381.98	0.28	0.00	0	0.00	0.000
43.76			373.57	0.28	0.00	0	0.00	0.000
43.95	1,2,3,4-trimethylbenzene	BZ1234	653.17	0.28	65.32	10	134.22	1.401
44.07			231.78	0.28	0.00	0	0.00	0.000
44.19			182.23	0.28	0.00	0	0.00	0.000
44.27			325.45	0.28	0.00	0	0.00	0.000
44.40			145.57	0.28	0.00	0	0.00	0.000
44.46	C11 aromatic	C11AR1	60.33	0.28	5.48	11	148.22	1.453
44.56	C11 aromatic	C11AR3	68.90	0.28	6.26	11	148.22	1.453
44.75			58.48	0.28	0.00	0	0.00	0.000
44.92	naphthalene	NAPHTH	289.03	0.28	28.90	10	128.16	0.800
45.05			102.70	0.28	0.00	0	0.00	0.000
45.18	n-dodecane	N_DODE	398.28	0.28	33.19	12	170.34	2.168
45.28			118.24	0.28	0.00	0	0.00	0.000
45.39			26.91	0.28	0.00	0	0.00	0.000
45.49			53.42	0.28	0.00	0	0.00	0.000
45.63			49.64	0.28	0.00	0	0.00	0.000
45.74			12.29	0.28	0.00	0	0.00	0.000
45.87			51.39	0.28	0.00	0	0.00	0.000
	Total C3		9.29	0.01%				
	Total C4		18.03	0.02%				
··-	Total C5		72.01	0.10%				
	Total C6		118.29	0.16%				
	Total C7		1261.94	1.70%				
	Total C8		6651.05	8.96%				
	Total C9		17639.24	23.77%				
	Total C10		29614.60	39.91%				
	Total C11		15632.46	21.06%				
	Total C12		3201.38	4.31%				

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJPPBV		CN	CTOH]	
3.04			5.71	0.24	0.00	0	0.00	0.000
3.77			1.20	0.24	0.00	0	0.00	0.000
7.04	propane	N PROP	2.19	0.24	0.73	3	44.10	2.669
10.91	isobutane	I BUTA	3.82	0.24	0.96	4	58.12	2,500
13.00	n-butane	N BUTA	8.03	0.24	2.01	4	58.12	2,500
16.21	3-methyl-1-butene	B1E3ME	3.36	0.24	0.67	5	70.13	2.000
16.63			3.83	0.24	0.00	0	0.00	0.000
17.21	isopentane	IPENTA	18.62	0.24	3.72	5	72.15	2.401
17.86	1-pentene	PENTE1	3.50	0.24	0.70	5	70.13	2.000
18.13			2.82	0.24	0.00	0	0.00	0.000
18.63	n-pentane	N PENT	16.92	0.24	3.38	5	72.15	2.401
19.17	t-2-pentene	T2PENE	3.79	0.24	0.76	5	70.13	2.000
19 71	2-methyl-2-butene	B2E2M	3.15	0.24	0.63	5	70.13	2.000
19.84			2.53	0.24	0.00	0	0.00	0.000
20.01			3.03	0.24	0.00	0	0.00	0.000
20.01			2.26	0.24	0.00	-0	0.00	0.000
20.10	2.2-dimethylbutane	BU22DM	6.24	0.24	1 04	6	86.17	2 333
20.40		BOZZDIWI	1.91	0.24	0.00		0.17	0.000
20.99			1.01	0.24	0.00		0.00	0.000
21.12		ODENITE	1.51	0.24	0.00		69.11	1 500
21.23			1.93	0.24	0.39		94 16	2.001
21.47	4-methyl-1-pentene	PIE4ME	4.71	0.24	0.79	0	04.10	2.001
21.63	3-metnyl-1-pentene	PIESME	2.02	0.24	0.34	0	70.10	2.001
21.74	cyclopentane	CPENTA	3.59	0.24	0.72	5	70.13	2.000
21.89	2,3-dimethylbutane	BU23DM	5.81	0.24	0.97	6	86.17	2.333
22.13	2-methylpentane	PENA2M	14.91	0.24	2.49	6	86.17	2.333
22.52			3.33	0.24	0.00	0	0.00	0.000
22.62	2,2-dimethylpentane	PEN22M	2.84	0.24	0.41		100.20	2.286
22.80	3-methylpentane	PENA3M	13.42	0.24	2.24	6	86.17	2.333
23.05	2-methyl-1-pentene	P1E2ME	2.26	0.24	0.38	6	84.16	2.001
23.62	n-hexane	N_HEX	27.91	0.24	4.65	6	86.17	2.333
24.74			2.26	0.24	0.00	0	0.00	0.000
24.83	methylcyclopentane	MCYPNA	27.83	0.24	4.64	6	84.16	2.001
25.01	2,4-dimethylpentane	PEN24M	3.31	0.24	0.47	7	100.20	2.286
25.25			1.64	0.24	0.00	0	0.00	0.000
25.90	benzene	BENZE	17.59	0.24	2.93	6	78.11	1.000
26.14	3,3-dimethylpentane	PEN33M	4.11	0.24	0.59	7	100.20	2.286
26.32	cyclohexane	CYHEXA	48.66	0.24	8.11	6	84.16	2.001
26.68	2-methylhexane	HEXA2M	55.99	0.24	8.00	7	98.19	2.001
26.77	2,3-dimethylpentane	PEN23M	28.99	0.24	4.14	7	100.20	2.286
26.92	cyclohexene	CYHEXE	11.07	0.24	1.85	6	82.15	1.668
27.06	3-methylhexane + pentanal	HEXA3M	90.99	0.24	13.00	7	100.20	2.286
27.38	1.3-dimethylcyclopentane	CPA13M	27.54	0.24	3.93	7	98.19	2.001
27.50	3-ethylpentane	PA3ET	37.85	0.24	4.73	8	114.23	2.251
27.61	2 2 4-trimethylpentane	PA224M	53.95	0.24	6.74	8	114.23	2.251
28.08	n-heptane	N HEPT	289.20	0.24	41.31	7	100.20	2.286
20.00	methylcyclohexane	MECYHX	414.02	0.24	59.15	7	98.19	2.001
20.04	C8 paraffin	C8PA1	34.70	0.24	4.34	8	114.23	2.251
29.14	2 5-diemthylbexane	HEX25M	40.69	0.24	5.09	8	114.23	2.251
29.40		HEX24M	117.13	0.24	14.64	8	114.23	2.251
29.02	C9 paraffin	C8PA2	81 50	0.24	10.19	8	114.23	2,251
29.04			72 47	0.24	0.00		0.00	0.000
30.13	2.2 trimothylacatana	PA234M	10.59	0.24	2 45	R	114 23	2.251
30.23	z,o,-umenyipenane		267 22	0.24	52 47	7	92 14	1.144
30.43		HY23DM	81 02	0.24	10 13	8	114 23	2.251
1 30.01	2,0-011101119111070110		01.00					

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
30.69			41.39	0.24	0.00	0	0.00	0.000
30.80	2-methylheptane	HEP2ME	492.86	0.24	54.76	9	128.26	2.223
30.87	4-methylheptane	HEP4ME	155.13	0.24	17.24	9	128.26	2.223
31.00	C8 paraffin	C8PA3	56.67	0.24	7.08	8	114.23	2.251
31.11	3-methylheptane	HEP3ME	465.66	0.24	58.21	8	114.23	2.251
31.36			380.87	0.24	0.00	0	0.00	0.000
31.43	2,2,5-trimethylhexane	HEX225	154.12	0.24	17.12	9	128.26	2.223
31.55	octene-1	OCT1E	9.65	0.24	1.21	8	112.21	2.000
31.74	1,1-dimethylcyclohexane	CHX11M	132.56	0.24	16.57	8	112.21	2.000
31.83			58.40	0.24	0.00	0	0.00	0.000
31.89			129.69	0.24	0.00	0	0.00	0.000
32.01			26.82	0.24	0.00	0	0.00	0.000
32.11	n-octane	N_OCT	1663.45	0.24	207.93	8	114.23	2.251
32.30			55.16	0.24	0.00	0	0.00	0.000
32.42			144.40	0.24	0.00	0	0.00	0.000
32.54			2.51	0.24	0.00	0	0.00	0.000
32.68			48.09	0.24	0.00	0	0.00	0.000
32.81	2,3,5-trimethylhexane	HEX235	29.52	0.24	3.28	9	128.26	2.223
32.90	2.4-dimethylheptane	HEP24D	59,49	0.24	6.61	9	128.26	2.223
33.05	4.4-dimethylheptane	HEP44D	157.95	0.24	17.55	9	128.26	2.223
33.19			18.69	0.24	0.00	0	0.00	0.000
33.27	2.6-dimethylheptane	HEP26D	456.01	0.24	50.67	9	128.26	2.223
33.41			214.20	0.24	0.00	Ō	0.00	0.000
33.52	2.5-dimethylheptane	HEP25D	978.69	0.24	108.74	9	128.26	2.223
33.72	3.3-dimethylheptane	HEP33D	706.67	0.24	78.52	9	128 26	2 223
33.83	C9 olefin	C90LF1	182.38	0.24	20.26	q	126.24	2 001
33.91		00022.	92.97	0.24	0.00	0	0.00	0.000
34.02	······································		55.01	0.24	0.00	0	0.00	0.000
34 13	ethylbenzene	FTB7	704 14	0.24	88.02	8	106 16	1 250
34.31	C9 olefin	C9OLE3	780.04	0.24	86.67	a	126 24	2 001
34 44	m- & p-xylene	MP XYI	2017.86	0.24	252 23	8	106 16	1 250
34 56	2-methyloctane		1251.38	0.24	139.04	9	128 26	2 223
34 71	2 montylootano	OOTEML	44 54	0.24	0.00	0	0.00	0.000
34.83	3-methyloctane	OCT3ME	1150 58	0.24	127.84	a	128.26	2 223
35.00	C9 paraffin	COPARI	116.31	0.24	12 92	- 0	128.26	2 223
35.08	styrene + hentanal	STYR	16.31	0.24	2.04	8	104 14	1 000
35.00		0	274 72	0.24	0.00	- 0	0.00	0.000
35.31	o-rylene		972 97	0.24	121 62	8	106 17	1 251
35 44		0_//12	675.50	0.24	0.00	0	0.00	0.000
35 56	nonene-1	NONE1	558 67	0.24	62 07	a	126.24	2.001
35.50	C9 naraffin	C9PAR2	342 88	0.24	38.10	<u>a</u>	128.24	2 222
35 70	n-nonane	N NON	4300 16	0.24	477 80	0 0	128.26	2 222
36.05	C9 olefin		140 00	0.24	16 56	a	126.20	2 001
36.00			92 53	0.24	0.00	n	0.00	0.000
36.20			730 23	0.24	0.00	n	0.00	0.000
26 17	isopropylbenzene	IPBB7	718 56	0.24	70 84	a	120.20	1.335
22 22			109.56	0.24	0.00	0	0.00	0.000
26 74	C9 paraffin 3	COPAS	1153.00	0.24	128 14	a	128.26	2 223
26.04			1/6 02	0.24	0.00	0	0.00	0.000
27.05	isopropylovelobevano	IPCYHY	2710.93	0.24	302.20	0	126.00	2 001
37.05	2.6-dimethyloctape		AAR 20	0.24		10	142 20	2 201
37.21		001200	259 00	0.24	0.00	- 10	0.00	0.000
37.20	2.6. dimethylastana	OCTOEM	070.21	0.24	0.00	10	142 20	2 201
37.30			3/0.31	0.24		0	120.20	1 225
37.49	n-propyidenzene	N_FRDZ	1000.74	U.24	00.111	Э	120.20	1.000

.

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	CTOH
37.60			180.68	0.24	0.00	0	0.00	0.000
37.72	m-ethyltoluene	M_ETOL	1541.37	0.24	171.26	9	120.20	1.335
37.79	p-ethyltoluene	P_ETOL	1319.98	0.24	146.66	9	120.20	1.335
37.89			351.51	0.24	0.00	0	0.00	0.000
37.96	1,3,5-trimethylbenzene	BZ135M	1957.15	0.24	217.46	9	120.20	1.335
38.03			1256.21	0.24	0.00	0	0.00	0.000
38.17			1164.75	0.24	0.00	0	0.00	0.000
38.27			1232.63	0.24	0.00	0	0.00	0.000
38.37	o-ethyltoluene	O_ETOL	1090.94	0.24	121.22	9	120.20	1.335
38.48			149.76	0.24	0.00	0	0.00	0.000
38.58			584.69	0.24	0.00	0	0.00	0.000
38.69			636.75	0.24	0.00	0	0.00	0.000
38.87	1,2,4-trimethylbenzene	BZ124M	3993.25	0.24	443.69	9	120.20	1.335
39.00			639.01	0.24	0.00	0	0.00	0.000
39.08			469.93	0.24	0.00	0	0.00	0.000
39.17	n-decane	N DEC	7190.20	0.24	719.02	10	142.29	2,201
39.29	C10 aromatic	C10AR1	259.29	0.24	25.93	10	134.22	1.401
39.39	isobutylbenzene	I BUBZ	645.20	0.24	64.52	10	134.22	1.401
39.48	sec-butvlbenzene	S BUBZ	843.95	0.24	84.40	10	134.22	1.401
39.72	C10 aromatic 7	C10AB7	1031.65	0.24	103 17	10	134 22	1 401
39.84	1.2.3-trimethylbenzene	BZ123M	2574.75	0.24	286.08	9	120.20	1 335
39.97	C10 paraffin	C10P C	2228 10	0.24	222.81	10	142 29	2 201
40.16	limonene		823.62	0.24	82.36	10	136.24	1 601
40.10	indan		1223 37	0.24	135.03	<u>a</u>	118 17	1 1 1 1 1
40.55	indene		2040 78	0.24	226 75	<u> </u>	116 15	0.888
40.50	diathylbanzana	DETR71	625 50	0.24	62 55	10	124 22	1 401
40.01		CIOARO	1009.65	0.24	120.97	10	104.22	1.401
40.09			1290.05	0.24	129.07	10	104.22	1.401
40.07		DETRZ	2000.04	0.24	106.00	10	104.22	1.401
41.02	1,2-dietnyidenzene	DEIBZS	1203.01	0.24	120.30		134.22	0.000
41.12	0		1203.00	0.24	170.00	10	104.00	0.000
41.24	2-propylioluene	TOL2PH	1/89.5/	0.24	178.96	10	134.22	1.401
41.34			280.44	0.24	0.00	0	0.00	0.000
41.45	<u></u>	010454	1301.16	0.24	0.00	0	0.00	0.000
41.52	C10 aromatic	C10AH4	870.10	0.24	87.01	10	134.22	1.401
41.60	C10 aromatic	C10AH5	827.19	0.24	82.72	10	134.22	1.401
41.78	isopropyitoluene	IPRIOL	1343.45	0.24	134.35	10	134.22	1.401
41.93			606.64	0.24	0.00	0	0.00	0.000
42.09			1505.46	0.24	0.00		0.00	0.000
42.29		N_UNDE	5094.87	0.24	463.17	무귀	100.30	2.182
42.48	Ciu aromatic	CIUAHB	687.52	0.24	68.75	10	134.22	1.401
42.54			459.57	0.24	0.00		0.00	0.000
42.60		D7:015	843.20	0.24	0.00		0.00	0.000
42.83	1,2,4,5-tetramethylbenzene	BZ1245	862.92	0.24	86.29	10	134.22	1.401
42.93	1,2,3,5-tetramethylbenzene	BZ1235	686.22	0.24	68.62	10	134.22	1.401
43.05			394.47	0.24	0.00		0.00	0.000
43.18			385.68	0.24	0.00	0	0.00	0.000
43.24			380.00	0.24	0.00	0	0.00	0.000
43.32			492.95	0.24	0.00	0	0.00	0.000
43.52	C11 paraffin	C11P_B	530.24	0.24	48.20	11	156.32	2.183
43.64			671.12	0.24	0.00	0	0.00	0.000
43.76			653.67	0.24	0.00	0	0.00	0.000
43.95	1,2,3,4-trimethylbenzene	BZ1234	1172.40	0.24	117.24	10	134.22	1.401
44.07			438.40	0.24	0.00	0	0.00	0.000
44.19			370.40	0.24	0.00	0	0.00	0.000

Canister: DRI-P Flight 3, 7/16/97 14,000'

SAM_RT	NEWNAME	MNEMONIC	AMOUNT	AMT_INJ	PPBV	C_N	MW	СТОН
44.27			570.70	0.24	0.00	0	0.00	0.000
44.40			395.14	0.24	0.00	0	0.00	0.000
44.56	C11 aromatic	C11AR3	137.61	0.24	12.51	11	148.22	1.453
44.75			113.94	0.24	0.00	0	0.00	0.000
44.92	naphthalene	NAPHTH	549.24	0.24	54.92	10	128.16	0.800
45.05			203.82	0.24	0.00	0	0.00	0.000
45.18	n-dodecane	N_DODE	814.27	0.24	67.86	12	170.34	2.168
45.28			225.56	0.24	0.00	0	0.00	0.000
45.39			56.54	0.24	0.00	0	0.00	0.000
45.48			70.85	0.24	0.00	0	0.00	0.000
45.54			43.63	0.24	0.00	0	0.00	0.000
45.63			116.81	0.24	0.00	0	0.00	0.000
45.73			32.04	0.24	0.00	0	0.00	0.000
45.87			117.42	0.24	0.00	0	0.00	0.000
45.96			5.60	0.24	0.00	0	0.00	0.000
	Total C3		9.10	0.01%				
	Total C4		11.85	0.01%				
	Total C5		73.37	0.07%				
	Total C6		117.77	0.12%				
	Total C7		1353.98	1.37%				
	Total C8		7454.40	7.53%				
	Total C9		20858.42	21.08%				
	Total C10		38360.41	38.77%				
	Total C11		24628.88	24.89%				
	Total C12		6088.04	6.15%				

• •

APPENDIX D

REF_	_RT	NAME	MNEMONIC	GROUP	1	C_	MW	CTOH
	2.00	dummy entry	DUMMY		0	1	1.00	-99.000
	3.85	C2 compounds	C2CMPD		2	2	28.05	1.999
	6.82	propene	PROPE		2	3	42.08	2.001
	7.10	propane	N PROP		1	3	44.10	2.669
	10.91	isoButane	i BUTA		1	4	58.12	2 500
	12.46	1Butene + iButdene	REARVI		5		56 11	2 001
	10.70		DUDIA		~	7	50.11	2.001
	12.70	1,3-Butadiene	BUDITS		2	4	54.09	1.500
	12.98	n-Butane	N_BUTA		1	4	58.12	2.500
	13.69	t-2-Butene	T2BUTE		2	4	56.11	2.001
	14.46	c-2-Butene	C2BUTE		2	4	56.11	2.001
	16.22	3-Me-1-Butene	B1E3ME		2	5	70.13	2.000
	17.17	isopentane	IPENTA		1	5	72.15	2.401
	17.99	1-Pentene	PENTE1		2	5	70 13	2 000
	18 37	2-Me-1-Butena	B1E2M		2	5	70 13	2,000
	19.57	p-Bentano	N DENT		4	5	70.10	2.000
	10.57	In-Feritarie	N_PENT		1	5	72.13	2.401
	18.78	isoprene	I_PREN		2	2	08.11	1.599
	19.02	t-2-Pentene	12PENE		2	5	70.13	2.000
	19.40	c-2-Pentene	C2PENE		2	5	70.13	2.000
	19.63	2-Me-2-Butene	B2E2M		2	5	70.13	2.000
	20.32	22DiMeButane	BU22DM		1	6	86.17	2.333
	21.14	CvcioPentene	CPENTE		2	5	68.11	1.599
	21.39	4-Me-1-Pentene	P1F4ME		2	6	84 16	2 001
	21 42	3-Me-1-Pentene	PIESME		2	Ā	84 16	2 001
	21.42	CucioRestana	CRENTA		-	č	70.12	2.000
	21.00		DUDODM		1	5	70.13	2.000
	21.80	23DIMeButane	BU23DM		1	D	80.17	2.333
	21.95	MIBE	MIBE		0	4	88.14	2.400
	22.08	2-MePentane	PENA2M		1	6	86.17	2.333
	22.61	22-DiMePentane	PEN22M		1	7	100.20	2.286
	22.68	3-MePentane	PENA3M		1	6	86.17	2.333
	22.92	2-Me-1-Pentene	P1E2ME		2	6	84.16	2.001
	22.99	1-Hexene	HEX1E		2	6	84 16	2 001
	23.18	C6Olefin	CEOLE1		5	ě	R4 16	2 001
	20.10	- Herene	NUEY		4	6	00 17	2.001
	23.51				1	0	00.17	2.333
	23.62	t-3-Hexene	TIMEXE		2	6	84.16	2.001
	23.74	t-2-Hexene	T2HEXE		2	6	84.16	2.001
	23.84	2-Me-2-Pentene	P2E2ME		2	6	84.16	2.001
	23.97	c-3-Me-2-Pentene	P2E3MC		2	6	84.16	2.001
	24.07	c-3-Hexene	C3HEXE		2	6	84.16	2.001
	24.15	c-2-Hexene	C2HEXE		2	6	84.16	2.001
	24 43	t-3-Me-2-Pentene	P2E3MT		2	6	84 16	2 001
	24 60	MeCyPentane	MCVDNA		ĩ	6	84 16	2.001
	24.09		DENGAN		1	7	100.00	2.001
	24.89	24-Dimerentane	PEN24M		1	4	100.20	2.200
	25.35	2231 nMeButane	BU223M		1	1	100.20	2.286
	25.61	1MeCypentene	CPENE1		2	6	82.15	1.668
	25.77	Benzene	BENZE		3	6	78.11	1.000
	25.99	33DiMePentane	PEN33M		1	7	100.20	2.286
	26.18	CycloHexane	CYHEXA		1	6	84.16	2.001
	26.40	4MeHexene	HEXE4M		2	7	98.19	2.001
	26.54	2MeHexane	HEXA2M		1	7	98,19	2.001
	26.63	23DiMePentane	PEN23M		1	7	100.20	2,286
	26 78	Cyclobeyene	CYHEXE		2	â	82 15	1 668
	26.00	2Mollerano	LEYASM		7	7	100.20	2 286
	20.90					<i>'</i>	00.20	2.200
	27.02		C/ULE1		4	2	90.19	2.001
	27.20	13DiMeCyPentane	CPA13M		1	1	98.19	2.001
	27.35	3EtPentane	PASET		1	8	114.23	2.251
	27.51	224TrMePentane	PA224M		1	8	114.23	2.251
1	27.70	C7Olefin	C7OLE2		2	7	98.19	2.001
	27.83	t-3-Heptene	T3HEPE		2	7	98.19	2.001
	27.94	n-Heotane	N HEPT		1	7	100.20	2.286
	28.08	CBOlefin	CBOLE1		2	Â	112 21	2 000
	28 10	CBOlefin	CROLE?		2	ē	112 21	2 000
	00.10	CeOlofin			4	0	110.01	2.000
1	20.31 00.10		DIFE		4	0	112.21	2.000
	28.43	244 I Me-1-Pentene	P1E244		z	8	112.21	2.000
:	28.89	MeCyHexane	MECYHX		1	7	98.19	2.001
:	29.08	C8Paraffin	C8PA1		1	8	114.23	2.251
:	29.27	25DiMeHexane	HEX25M		1	8	114.23	2.251
:	29.34	24DiMeHexane	HEX24M		1	8	114.23	2.251
	29.69	C8Paraffin	C8PA2		1	8	114.23	2,251
	30.09	234TrMePentane	PA234M		1	R	114 23	2 251
	20.00	Toluene				7	02 14	1 144
	00.20		LYAD		3	,	32.14	1.199
;	30.45	23Dimeriexane			1	0	114.23	2.231
	30.65	zmeHeptane	HEP2ME		1	9	128.26	2.223

30.73	4MeHentane	HEPAME	1	٩	128.26	2 223
30.86	CaPacoffic	CADA2	4	0	114 22	2.220
00.00		COFAS	1	0	114.23	2.201
30.96	SMeHeptane	нерзме	1	8	114.23	2.251
31.31	225TMHexane	HEX225	1	9	128.26	2.223
31.40	Octene-1	OCT1E	2	8	112.21	2.000
31.51	11DMeCyHexane	CHX11M	1	8	112.21	2.000
31.96	n-Octane	N OCT	1	8	114.23	2.251
32 67	235TriMeHevane	HEX235	ò	ā	128.26	2 2 2 3 3
20 70	24DiMeHesters	HERAD	ž	~	100.00	2.220
02.70				3	120.20	2.223
32.84	C9Olenn	C9OLE2	2	9	126.24	2.001
32.89	44DiMeHeptane	HEP44D	1	9	128.26	2.223
33.13	26DiMeHeptane	HEP26D	1	9	128.26	2.223
33.38	25DiMeHeptane	HEP25D	1	9	128.26	2.223
33.58	33DiMeHeptane	HEP33D	1	9	128.26	2 223
33 68	CoOlefin		2	ŏ	126.24	2.001
22.00	5 Beenere	CJOLE (2	3	120.24	2.001
33.98	Elbenzene	EIBZ	3	0	100.10	1.250
34.15	CyOletin	C9OLE3	2	9	126.24	2.001
34.28	m/p-Xylene	MP_XYL	3	8	106.16	1.250
34.45	2MeOctane	OCT2ME	1	9	128.26	2.223
34.66	3MeOctane	OCT3ME	1	9	128.26	2.223
34 84	CoParaffin	COPAR1	÷.	0	128.26	2 222
34.05	Carana			3	120.20	2.223
34.95	Styrene	SITH	3	8	104.14	1.000
35.15	o-Xylene	O_XYL	3	8	106.17	1.251
35.40	Nonene-1	NONE1	2	9	126.24	2.001
35.52	C9Paraffin	C9PAR2	1	9	128.26	2,223
35.61	n-Nonane	N NON	1	ō.	128.26	2 223
35 73	CoBemfin	CORADO	4	~	100.00	0.000
35.73	Carainn	CSPARS	1	9	120.20	2.223
35.89	C9Oletin	C9OLE4	2	9	126.24	2.001
36.29	iPropBenzene	IPRBZ	3	9	120.20	1.335
36.57	C9 Paraffin 3	C9PA3	1	9	128.26	2.223
36.84	iPropCyHexane	IPCYHX	1	9	126.24	2.001
36 98	26DiMeOctane	007260	÷	10	142 20	2 201
27.00		A DINE	÷.	40	196.00	1.000
37.08	alpha-pinene	A_PINE	2		130.23	1.600
37.18	36DiMeOctane	OCT36M	1	10	142.29	2.201
37.31	nPropBenzene	N_PRBZ	3	9	120.20	1.335
37.54	mEtToluene	M_ETOL	3	9	120.20	1.335
37.62	nEtToluene	PFTO	3	9	120 20	1.335
37 70	135TriMaBanzana	871254	2	ŏ	120.20	1 335
07.00		0100 4		40	120.20	1.333
37.92	Ciuparamin	CTOP_A	1	10	142.29	2.201
38.19	oEtToluene	O_ETOL	3	9	120.20	1.335
38.53	beta-pinene	B_PINE	1	10	136.23	1.600
38.68	124TriMeBenzene	BZ124M	3	9	120.20	1.335
38.97	n-Decane	N DEC	1	10	142.29	2.201
30.08	C10Aromatic	CIDARI	2	10	134 22	1 401
20.10	ButBaaraaa		ŏ.,	40	104.00	1.401
39.13	ButBenzene		3	10	134.22	1.401
39.27	sButBenzene	S_BUBZ	3	10	134.22	1.401
39.50	C10 Aromatic 7	C10AR7	3	10	134.22	1.401
39.63	123TriMeBenzene	BZ123M	3	9	120.20	1.335
39.75	C10Paraffin	C10P C	1	10	142.29	2.201
39.99	Limonene	LIMON	2	10	136.24	1.601
40.07	lodan	INDAN	2	ā	118 17	1 111
40.07	Indan	INDENE	2	0	146.16	0.000
40.20	Inclana		3		110.15	0.000
40.40	13diethylbenzene	DETBZ1	3	10	134.22	1.401
40.47	C10Aromatic	C10AR2	3	10	134.22	1.401
40.64	14diethylbenzene	DETBZ2	3	10	134.22	1.401
40.80	12diethylbenzene	DETBZ3	3	10	134.22	1.401
41 09	2-propulToluene	TOI 2PB	ā -	10	134 22	1 401
44.04		Ctot PA	2	10	104.00	1.401
41.31	CTUAromatic	CTUAR4	3	10	134.22	1.401
41.39	C10Aromatic	C10AR5	3	10	134.22	1.401
41.57	iPrToluene	IPRTOL	3	10	134.22	1.401
42.04	n-Undecane	N_UNDE	1	11	156.30	2.182
42.24	C10Aromatic	C10AB6	3	tO	134.22	1.401
42 47	C11Paraffin	C11P A	1.	11	156 32	2 183
40.00	104EbatesMcDaaaaa	071046	· ·	10	104.00	1.401
+2.59		021240	3	10	134.22	1.401
42.71	1235letraMeBenzene	821235	3	10	134.22	1.401
43.35	C11Paraffin	C11P_B .	1	1.1	156.32	2.183
43.72	1234tetraMeBenzene	BZ1234	3	10	134.22	1.401
44.12	1MeIndan	IND_1M	3	10	132.21	1.201
44 24	C11Aromatic	C11AB1	3	11	148 22	1.453
44.00	CitArometic	C11AP2	5	• •	149.00	1.452
44.33	CTTAROMALIC	UTIANJ NADUTU	3	11	140.22	0.000
44.69	Naphthalene	NAPHIH	3	10	128.16	0.800
44.92	n-Dodecane	N_DODE	1	12	170.34	2.168
50.00	end of file	DUM2	0	0	0.00	-99.000

Page 2

CID	AN	1 CANISTER QA	LOT	N_DATE	RAW_FIL	E AFLAG	C2CMPD	PROPE	N_PROP	I_BUTA	BEABYL	BUDI13	N_BUTA	T2BUTE	C2BUTE	B1E3ME	IPENTA	PENTE1	B1E2M	N_PENT	I_PREN	T2PENE	C2PENE
CWT1S97071501	P	DRI-M	595	7/18/93	HPAF177	1	0.0	0.00	4.83	11.9	8 0.0	0.0) 27.34	i 1.98	3 4.63	2.66	62.64	36.24	4 1.0 [°]	7 45.84	0.00	3.65	2.66
CWT2S97071501	Ď.	DRI-B	595	7/18/9	HPAF177	2	0.0	0.00) 5.34	11.2	1 0.0	0.0) 29.00	1.73	9 4.70) 5.54	65.95	5 41.91	1 1.5	3 54.40	0.00	5.41	6.01
CWT3S97071501	p	DRI-F	595	7/20/9	7 HPAF177	8	0.0	0.00	6.24	14.9	9 0.0	0.0) 35.61	3.20	0.75	5 0.00	78.54	37.37	7 1.4	2 54.85	0.00	3.83	2.69
CWT1S97071502	P	DRI-L	592	7/22/9	HPAF179	3	0.0	0.00) 6.85	14.5	1 0.0	0.0) 30.0	3 14.42	2 0.81	0.00) 83.96	14.70	5 17.2	2 48.41	0.00	2.04	0.92
CWT2S97071502	p	DRI-N	582	7/21/9	7 HPAF176	9	0.0	0.00) 6.47	13.1	5 0.0	0.0) 28.3	5 2.83	3 0.70	3 0.00	66.53	6.20	8 3.1:	3 45.85	6 0.00	2.72	0.90
CWT3S97071502	è.	DRI-H	582	7/21/9	7 HPAF178	7	0.0	0.00) 7.37	14.5	4 0.0	D 0.0	30.8	0.00) 2.3	5 0.47	72.30) 4.70	D 1.4'	7 48.68	0.00	1.72	3.36
CWT1S970716	p	DRI-R	593	7/21/9	7 HPAF178	2	0.0	0.00) 2.31	4.8	1 0.0	0.0	D 11.19	5 0.00) 1.5	7 1.81	25.75) 3.69	2.2	5 16.43	0.00	1.46	2.94
CWT2S970716	p	DRI-J	583	7/21/9	7 HPAF178	4	0.0	0.00) 2.12	4.6	8 0.0	0.0	9.12	2 0.00	0.0) 3.53	i 23,14	4.55	5 1.93	2 14.32	9.00	3.93	2.60
CWT3S970716	p	DRI-P	583	7/21/9	7 HPAF178	6	0.0	0.00) 2.19	3.8	2 0.0	0.0	8.03	8 0.00	0.0) 3.36	18.62	2 3.50	0.0	0 16.92	2 0.00	3.79	0.00
Average	•						0.0	0.00) 4.86	10.4	1 0.0	0.0) 23.3	2.69	1.7	3 1.93	55.20) 17.00) 3.3	3 38.41	0.00	÷ 3.17	2.48
Ave comV							0.0	0.0) 1.62	2.6	0.0	0.0	0 5.83	0.67	7 0.43	0.34	11.00	3.40	0.6	7 7.66	0.00	0.63	0.50
CNO							2.0	3.0	3.00	4.0	0 4.0	0 4.0) 4.00) 4.00) 4.0) 5.00	5.00) 5.00	0 5.0	0 5.00) 5.00	5.00	5.00
MW							28.0	5 42.0	3 44.10	58.1	2 56.1	1 54.0	ə 56.12	2 56.11	1 56.11	1 70.13	72.15	5 70.13	3 70.1	3 72.15	68,11	70.13	70.13
СТОН							2.0	0 2.0	2.67	2.5	0 2.0	0 1.5	2.54	2.00	2.0	2.00	2.40	2.00	0 2.0	0 2.40) 1.60	2.00	2.00
ppmv*cloh							0.0	0.0) 4.32	6.5	1 0.0	0.0	0 14.5	7 1.39	5 0.8	0.77	26.55	5 6.80	D 1.3	3 18.45	6 0. 00	1.27	0.99

•

CID	B2E2M	BU22DM	CPENTE	P1E4ME	P1E3ME	CPENTA	BU23DM	MTBE	PENA2M	PEN22M	PENA3M	P1E2ME	HEX1E	C6OLE1	N_HEX	T3HEXE	T2HEXE	P2E2ME	P2E3MC	C3HEXE	C2HEXE	P2E3MT	MCYPNA
CWT1S97071501	3.29	8.61	4.24	1 2.85	5 0.75	11.95	19.23	0.00	97.81	2.78	67.36	0.00) 2.40) 1.50	0 169.93	0.00	3.61	0.00	0.00	3.9	3 0.00	4.93	136.21
CWT2S97071501	4.46	15.36	9.71	6.91	I 0.00	14.77	23.57	0.00	102.96	0.00) 74.33	0.00) 3.37	2.73	3 180.62	0.00	4.04	0.00	0.00	2.94	3 0.00	2.15	141.29
CWT3S97071501	3.53	9.14	4.01	3.27	7 0.00	13.63	20.66	0.00	96.56	1.18	70.86	0.00) 1.97	0.00) 168.24	0.00	1.62	2 0.00	0.00	0.0) 0.00	2.49	136.21
CWT1S97071502	18.15	7.83	15.60) 15.89	9 12.12	9.19	23.39	0.00	71.64	8.92	2 45.66	0.00) 7.04	8.07	/ 103.64	7.44	0.00	10.85	4.02	0.0	5.71 5.71	3.70	92.06
CWT2S97071502	4.55	7.93	1.96	0.95	2.72	10.95	13.11	0.00	55.07	1.68	3 42.17	0.00) 1.80) 0.00	97.05	i 0.00	1.49	0.00	0.00	0.00) 1.64	0.00	87.66
CWT3S97071502	3.61	7.04	0.00) 0.00	0.00	9.66	13.96	0.00	63.23	1.36	3 46.47	0.00) 2.25	6 0.00	0 105.64	0.00	0.00) 0.00	0.00	0.0) 0.00	0.00	96.85
CWT1S970716	2.43	4.86	1.14	4.57	7 0.00	6.49	7.42	0.00) 19.32	0.00) 11.37	0.00	9 4.01	3.75	5 31.91	0.00	0.00	0.00	0.00	2.13	9 0.00	1.01	30.64
CWT2S970716	2.60	2.07	2.75	2.02	2 1.23	3.70	5.26	0.00	17.58	1.04	l 11.31	0.00) 1.27	0.50) 27.53	0.00	1.29	0.00	0.00	1.43	9 0.00	0.00	28.13
CWT3S970716	3.15	6.24	1.93	3 4.71	1 2.02	3.59	5.81	0.00) 14.91	2.84	13.42	2.26	5 0.00	0.00	27.91	0.00	0.00	0.00	0.00	0.0	0.00	0.00	27.63
Average	5.09	7.68	4.60) 4.58	8 2.09	9.35	14.71	0.00	59.90	2.20) 42.55	0.25	5 2.66	1.84	F 101.41	0.83	1.36	1.21	0.45	1.10	6 0.82	1.59	86.32
Ave ppmV	1.02	1.28	0.92	2 0.76	6 0.35	1.87	2.45	0.00	9.98 (0.31	1 7.09	0.04	0.45	i 0.31	16.90	0.14	0.23	0.20	0.07	0.11	0.14	0.26	14.39
C_NO	5.00	6.00	5.00	6.00	0 6.00	5.00	6.00	4.00	6.00	7.00) 6.00	6.00) 6.00	6.00	0 6.00	6.00	6.00	6.00	6.00	6.00) 6.00	6.00	6.00
MW	70.13	86.17	68.11	1 84.16	8 84.16	70.13	86.17	68.14	66.17	100.20	86.1 7	84.16	3 84.16	i 84.16	3 86.17	84.16	84.16	64.16	84.16	84.16	8 84.16	64.16	84.16
CTOH	2.00	2.33	i 1.60	2.00	0 2.00	2.00	2.33	2.4	2.33	2.29	2.33	2.00) 2.00	2.00) 2.33	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
ppmv*cloh	2.03	2.96	1.47	7 1.53	3 0.70	3.74	5.72	0.0	23.29	0.72	2 16.55	0.00	0.85	0.61	39.43	0.28	0.45	i 0.40	0.15	0.39	0.27	0.53	28.79

()

Appendix D

.

CID	PEN24M	BU223M	CPENE1	BENZE	PEN33M	CYHEXA	HEXE4M	HEXA2M	PEN23M	CYHEXE	HEXA3M	C7OLE1	CPA13M	PA3ET	PA224M	C7OLE2	T3HEPE	N_HEPT	C8OLE1	CBOLE2	C8OLE3	P1E244	MECYHX
CWT1S97071501	18.02	1.36	6 0.00	65.02	10.69	200.73	0.00	219.25	113.27	38.63	331.47	0.00	102.70) 137.83	3 199.39) 1.06	i 0.00	956.15	0.00	0.00) 1.17	0.00	1162.22
CWT2S97071501	18.38	1.88	0.00	70.43	12.40	215.52	0.00	234.55	121.18	41.76	357.14	0.00	110.79	147.26	8 213.77	7 1.61	0.00	1044.76	0.00	0.00	1.35	0.00	1270.19
CWT3S97071501	17.84	0.00	0.00	66.86	10.92	202.95	0.00	219.63	114.45	38.76	333.53	0.00	102.94	138.20	8 196.85	5 0.00	0.00	978.10	0.00	0.00	0.00	0.00	1196.63
CWT1S97071502	16.60	5.87	6.10) 50.36	7.92	145.21	0.00	156.30	82.34	28.79	236.46	3.66	76.26	5 100.81	1 138.37	/ 0.00	5.27	696.84	0.00	6.50	0.00	5.05	911.15
CWT2S97071502	11.33	0.00) 0.00) 47.51	6.27	138.27	0.00	147.00	77.07	26.41	224.17	0.00	69.42	95.6	1 135.63	0.75	0.00	678.99	0.00	0.00	0.00	0.00	899.17
CWT3S97071502	12.31	0.00	0.00) 56.14	10.75	i 157.60	0.00	165.84	88.78	33.34	260.63	0.00	82.03	110.4	1 157.86	J 0.00	0.00	779.47	0.00	0.00	0.00	0.00	1006.21
CWT1S970716	4.90	0.00) 0.00) 17.10) 3.31	51.52	0.00	55.65	29.18	10.76	89.24	0.00) 27.30) 37.34	4 53.67	7 1.16	0.00	286.45	0.00	0.00	2.35	i 0.00	401.06
CWT2S970716	4.01	0.00) 0.00	16.24	3.71	48.55	0.00	51.86	28.22	10.45	63.61	0.00) 26.21	35.27	7 50.20) 0.00	0.00	268.05	1.07	0.00	0.00	0.00	381.91
CWT3S970716	3.31	0.00	0.00	17.56	- 4.11	48.66	0.00	55.99	28.99	11.07	90.99	0.00) 27.54	l 37.8	5 53.95	5 0.00	0.00	289.20	0.00	0.00	0.00	0.00	414.02
Average	11.86	1.01	0.68	45.25	5 8.01	134.33	0.00	145.12	75.94	26.66	223.03	0.41	69.47	7 93.41	1 133.54	2 0.53	0.59	664.22	0.12	0.72	0.54	0.56	849.40
Ave ppmV	1.69	0.14	i 0.11	7.54	L 1.14	22.39	0.00	20.73	10.85	4.44	31.86	0.0	9.92	2 11.64	8 16.66	0.06	0.06	94.89	0.01	0.06	0.07	0.07	121.34
C_NO	7.00	7.00	6.00) 6.00) 7.00	6.00	7.00) 7.00	7.00	6.00	7.00	7.0) 7.00) 6.0	D 6.00) 7.00	7.00	7.00	8.00	8.00	8.00	8.00	7.00
MW	100.20	100.20) 82.15	5 78.11	100.20	84.18	98.19	98.19	100.20	82.15	100.20	96.11	96.19	114.2	3 114.23	3 98.19	98.19	100.20	112.21	112.21	112.21	112.21	96.19
стон	2.29	2.29	1.67	1.00	2.29	2.00	2.00	2.00	2.29	1.67	2.29	2.00	2.00) 2.2	5 2.25	5 2.00	2.00	2.29	2.00	2.00	2.00	2.00	2.00
ppmv*cloh	3.87	0.33	0.19) 7.54	2.62	: 44.80	0.00	41.48	24.80	7.41	72.63	0.12	19.86	3 26.20	8 37.57	0.15	0.17	216.92	0.03	0.18	0.14	0.14	242.81

CID	C8PA1	HEX25M	HEX24M	C8PA2	PA234M	TOLUE	HX23DM	HEP2ME	HEP4ME	C8PA3	HEP3ME	HEX225	OCT1E	CHX11M	N_OCT	HEX235	HEP24D	C9OLE2	HEP44D	HEP26D	HEP25D	HEP33D	C9OLE1
CWT1S97071501	93.82	94.81	292.89	192.19	44.62	854,22	163.36	961.28	293.55	110.31	850.20	277.78	14.32	237.16	3 2605.36	i 41.15	5 79.87	0.00	209.44	572.78	1260.22	880.57	223.96
CWT2S97071501	102.11	104.12	321.80	213.85	47.73	968.94	183.67	1098.25	331.69	125.08	972.48	318.36	15.27	270.42	2 3062.39	49.60	95.71	0.00	253.87	705.34	1530.40	1074.32	274.96
CWT3S97071501	96.21	99.94	309.30	206.71	48.24	931.99	176.05	1040.98) 318.36	120.61	927.93	304.46	17.07	261.12	2963.20) 47.46	3 92.87	0.00) 245.27	682.46	5 1490.26	1048.20	269.22
CWT1S97071502	4.06	62.13	242.44	165.09	39.45	716.44	141.85	846.33	261.45	97.04	771.27	251.20) 14.7E	117.19	2473.64	40.65	5 80.83	0.00) 211.16	588.33	3 1266.07	909.96	233.28
CWT2S97071502	74.49	79.92	241.34	160.05	39.51	714.00	144.33	657.40	266.80	98.03	782.75	255.35	15.24	219.00	2556.87	42.71	64.5E	0.00	223.11	630.01	1364.92	969.71	248.91
CWT3S97071502	0.00	95.52	275.94	182.26	44.60	804.94	163.34	959.85	296.86	111.17	876.92	266.26	17.65	245.16	3 2069.91	47.71	i 94.36	0.00	249.48	705.43	3 1526.86	1084.61	276.90
CWT1S970716	37.12	39.67	116.52	79.33	20.63	336.88	76.02	453.20) 144.19	52.62	427.61	142.06	9.15	i 121.26	5 1475.92	25.50) 51.62	0.00) 135.78	366.26	8 841.75	605.47	155.89
CWT2S970716	32.04	37.72	110.34	76.49	19.91	332.94	74.67	446.70) 141.03	52.16	421.84	139.75	9.53	119.70	3485.17	25.86	52.16	0.00) 138.35	398.65	5 860.48	620.83	159.45
CWT3S970716	34.70) 40.69	117.13	81.50	19.58	367,32	81.03	492.00	5 155.13	56.67	465.66	i 154.12	9.65	i 132.56	3 1863.45	29.52	2 59.45	0.00) 157.95	456.01	978.69	706.67	182.38
Average	52.95	74.95	225.30	150.63	36.03	669.74	133.81	795.21	245.67	91.52	721.86	236.62	13.63	l 191.51	2352.86	38.91	76.83	0.00	202.71	569.70	1237.96	877.82	224.99
Ave ppmV	6.62	9.37	28.16	i 18.65	i 4.50	95.68	16.73	86.36	3 27.30	11.44	90.23	26.31	1.70) 23.94	l 294.11	4.32	2 8.54	0.00) 22.52	63.30	0 137.55	97.54	25.00
C_NO	8.00	6.00	8.00	8.00	8.00	7.00	8.00	9.00	9.00	8.00	8.00	9.00	8.00) 8.00	8.00	9.00	9.00	9.00) 9.00	9.00	9.00	9.00	9.00
MW	114.23	114.23	114.23	114.23	114.23	92.14	114.23	128.26	128.26	114.23	114.23	128.26	112.21	112.21	114.23	128.26	128.26	126.24	128.26	128.26	3 128.26	128.26	126.24
стон	2.25	2.25	2.25	2.25	2.25	1,14	2.25	2.22	2.22	2.25	2.25	2.22	2.00	2.00	2.25	2.22	2.22	2.00) 2.22	2.22	2 2.22	2.22	2.00
ppmv*cloh	14.90	21.09	63.39	42.44	10.14	109.45	37.65	196.42	60.68	25.75	203.11	58.49	3.41	47.88	662.04	9.61	18.98	0.00	50.07	140.72	2 305.78	216.82	50.02

(j)

Appendix D

•

-

CID	ETBZ	C9OLE3	MP_XYL	OCT2ME	OCT3ME	C9PAR1	STYR	O_XYL	NONE1	C9PAR2	N_NON	C9PAR3	C9OLE4	IPRBZ	C9PA3	IPCYHX	OCT26D	A_PINE	OCT36M	N_PRBZ	M_ETOL	P_ETOL	BZ135M
CWT1S97071501	858.78	848.74	2199.45	1237.63	1137.64	117.58	17.87	950.87	509.27	314.62	3457.87	0.00	126.3	2 566.95	902.50	1926.59	312.04	0.00	639.59	705.06	5 1013.19	803.32	1097.96
CWT2S97071501	1075.26	1074.21	2827.30	1620.86	1487.02	152.06	22.36	1255.70	672.88	414.73	4847.28	0.00	172.6	2 799.49	1266.06	2815.25	454.67	0.00	964.07	1041.17	/ 1533.00	1259.20	1762.17
CWT3S97071501	1050.96	1056.95	2786.05	1612.16	1477.16	149.79	22.47	1252.96	682.84	416.44	4968.67	0.00	175.24	l 814.34	1302.99	2931.13	472.09	0.00	1010.85	1066.45	5 1630.83	1326.14	1093.29
CWT1S97071502	892.72	917.44	2396.08	1373.32	1268.96	132.26	19.40	1077.24	587.42	359.09	4095.54	0.00	147.56	675.95	1074.70	2351.92	382.64	0.00	791.52	864.40) 1281.38	1003.72	1406.78
CWT2S97071502	961.38	1005.40	2619.45	1553.46	1426.47	146.59	21.61	1208.36	665.72	409.47	4879.10	0.00	172.43	3 808.78	1288.64	2916.50	476.67	0.00	1010.74	1076.96	6 1624.07	1325.14	1904.48
CWT3S97071502	1082.03	1132.74	2974.02	1752.87	1613.06	164.30	23.33	1373.50	751.20	464.16	5598.66	0.00	195.60) 924.80	1474.81	3359.91	548.95	0.00	1167.83	1243.03	1880.37	1550.47	2233.70
CWT1S970716	581.06	644.33	1621.63	1001.03	921.83	94.23	13.95	757.80	438.63	270.18	3214.95	0.00) 114.10) 531.96) 657.99	1942.43	322.26	0.00	672.23	707.37	1051.99	856.82	1235.99
CWT2S970716	610.27	674.41	1734.98	1074.63	985.58	99.17	13.96	827.95	476.24	295.26	3623.52	0.00	125.34	600.6 7	968.74	2255.16	370.47	0.00	796.02	833.49	1250.24	1080.07	1567.65
CWT3S970716	704.14	780.04	2017.86	1251.38	1150.58	116.31	16.31	972.97	558.67	342.88	4300.16	i 0.00	149.00	718.56	1153.24	2719.83	448.20	0.00	970.31	1006.74	1541.37	1319.98	1957.15
Average	868.51	903.81	2353.00	1386.37	1274.26	130.25	19.03	1075.26	593.65	365.20	4331.75	0.00	153.10	8 715.73	1143.30	2579.86	420.69	0.00	891.46	951.63	1422.94	1169.43	1673.24
Ave ppmV	108.56	100.42	294.13	154.04	141.58	14.47	2.38	134.41	65.96	40.58	481.31	0.00) 17.0	2 79.53	127.03	286.65	42.09	0.00	89.15	105.74	158.10	129.94	185.92
C_NO	8.00	9.00	6.00	9.00	9.00	9.00	8.00	8.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	10.00	10.00	10.00	9.00	9.00	9.00	9.00
MW	105.16	126.24	106.16	128.26	128.26	128.26	104.14	106.17	126.24	128.26	128.26	128.26	126.24	1 120.20	128.26	126.24	142.29	136.23	142.29	120.20	120.20	120.20	120.20
СТОН	1.25	2.00	1.25	2.22	2.22	2.22	1.00	1.25	2.00	2.22	2.22	2.22	2.00) 1.34	2.22	2.00	2.20	1.60	2.20	1.34	1.34	1.34	1.34
ppmv*ctoh	135.70	200.95	367.66	342.43	314.74	32.17	2.38	168.14	131.99	90.21	1069.94	0.00	34.0	5 106.17	282.40	573.56	92.64	0.00	196.21	141.16	211.07	173.47	248.20

Appendix D

•

CID	C10P_A 4	O_ETOL	B_PINE	BZ124M	N_DEC	C10AR1	I_BUBZ	S_BUBZ	C10AR7	BZ123M	C10P_C	LIMON	INDAN	INDENE	DETBZ1	C10AR2	DETBZ2	DETBZ3	TOL2PR	C10AR4	C10AR5	IPRTOL	N_UNDE
CWT1S97071501	733.96	663.10	0.00	2071.91	2992.16	122.30	330.13	420.72	440.04	1111.38	796.15	315.07	487.86	741.24	225.99	456.43	680.21	375.66	507.13	259.38	221.97	374.28	1013.72
CWT2S97071501	1110.01	1035.40	0.00	3441.00) 5478.77	212.29	551.61	711.56	795.03	1988.94	1550.37	590.68	897.06	1419.06	6 438.60) 894.22	1374.49	789.13	1068.48	549.50) 487.48	802.76	2506.07
CWT3S97071501	1190.37	1111.66	0.00	3610.59	6389.60	235.57	607.36	785.70	900.32	2285.86	1629.92	688.53	1045.40	1704.42	513.40	1072.85	1673.67	961.49	1380.97	673.56	628.33	1021.58	3653.97
CWT1S97071502	923.68	841.64	0.00	2734.19	3969.70	164.22	430.97	558.33	596.44	1518.81	1086.52	432.16	671.05	5 1017.37	316.22	842.92	967.15	529.98	723.68	371.02	329.42	546.29	1408.31
CWT2S97071502	1186.33	1111.05	i 0.00	3792.12	6145.75	235.68	610.53	791.91	900.18	2264.33	1791.81	684.61	1044.18	1646.92	2 516.76	i 1044.57	1634.24	948.43	1311.68	656.56	600.59	991.09	3152.46
CWT3S97071502	1373.36	1288.94	0.00	4467.51	7372.22	275.50	715.27	920.37	1064.71	2699.21	2154.05	812.90	1231.20) 1990.84	614.86	1263.10	1964.86	1155.65	1613.02	832.14	740.86	1209.98	4058.50
CWT1S970716	794.12	711.18	0.00	2412.01	3794.45	151.33	393.53	508.93	560.15	1396.39	1074.50	420.86	639.36	3 999.06	3 302.54	619.49	941.42	539.23	729.46	370.92	326.57	551.12	1602.17
CWT2S970716	953.75	883.04	0.00) 3169.63	5392.87	202.60	512.92	665.29	775.17	1960.03	1581.68	601.15	910.31	1473.36	5 453.18	936.59	1467.83	854.18	1190.22	595.21	544.11	904.62	2973.88
CWT3S970716	0.00	1090.94	0.00	3993.25	5 7190.20	259.29	645.20	843.95	1031.65	2574.75	2228.10	823.62	1223.37	7 2040.78	625.50) 1298.65	2068.64	1263.61	1789.57	870.10	827.19	1343.45	5094.87
Average	918.42	970.77	/ 0.00	3321.36	3 5416.19	206.53	533.06	689.64	764.85	i 1977.74	1565.90	596.62	905.55	5 1448.12	2 445.49	5 914.31	1423.63	826.37	1148.25	575.38	522.95	660.57	2629.33
Ave ppmV	91.84	107.86	i 0.00) 369.04	1 541.62	20.65	53.31	68.96	76.49	219.75	156.59	59.66	100.62	2 160.90) 44.55	5 91.43	142.36	82.64	114.82	57.54	52.29	86.06	257.21
C_NO	10.00	9.00) 10.00	9.00) 10.00	10.00	10.00	10.00	10.00	9.00	10.00	10.00	9.00	9.00) 10.00) 10.00	10.00	10.00	10.00	10.00	10.00) 10.00	11.00
MW	142.29	120.20	136.23	120.20) 142.29	134.22	134.22	134.22	134.22	120.20	142.29	136.24	118.17	/ 116.15	5 134.22	134.22	134.22	134.22	134.22	134.22	134.22	134.22	156.30
CTOH	2.20	1.34	1.60) 1.34	2.20	1.40	1.40	1.40	1.40	1.34	2.20	1.60	1.11	0.65) 1.40	0 1.40	1.40	1.40	1.40	1.40	1.40	1.40	2.18
ppmv*ctoh	202.14	144.00	0.00) 492.67	1192.10	28.94	74.68	96.62	109.96	293.37	344.65	95.52	: 111.76	142.86	5 62.41	128.10	199.45	115.77	160.87	80.61	73.26	120.57	561.24

()

CID	C10AR6	C11P_A	BZ1245	BZ1235	C11P_B	BZ1234	IND_1M	C11AR1	C11AR3	NAPHTH	N_DODE	IDNMHC	UNID	TOTAL
CWT1S97071501	160.67	32.88	168.85	139.96	91.91	183.33	0.00	0.00	22.09	63.96	64.64	50692.89	10059.10	60751.99
CWT2S97071501	369.10	75.99	411.38	343.32	239.73	493.96	0.00	0.00	55.51	185.35	279.17	75509.27	16446.46	91955.73
CWT3S97071501	500.03	100.11	597.51	478.32	353.11	800.37	0.00	0.00	84.29	353.44	587.10	82254.94	19267.68	101522.62
CWT1S97071502	238.21	0.00	244.45	206.35	136.38	271.62	0.00	0.00	28.90	102.63	111.34	58201.86	12543.47	70745.33
CWT2S97071502	471.79	0.00	538.30	443.11	318.68	666.86	0.00	63.48	80.05	289.40	350.23	76923.52	18089.92	95013.44
CWT3S97071502	582.65	115.30	686.52	557.25	406.03	880.40	0.00	82.24	95.62	385.94	544.90	90364.73	21527.74	111892.47
CWT1S970716	251.67	51.67	272.31	223.82	154.40	313.49	0.00	0.00) 39.30	126.04	159.64	46296.87	10713.57	57010.44
CWT2S970716	437.32	0.00	507.39	413.11	300.22	653.17	0.00	60.33	68.90	289.03	398.28	59338.22	14880.07	74216.29
CWT3S970716	687.52	0.00	662.92	686.22	530.24	1172.40	0.00	0.00) 137.61	549.24	814.27	76485.66	22470.56	98956.22
Average	411.02	41.77	476.63	367.94	281.19	603.96	i 0.00	22.69	68.03	260.58	369.97	68452.00	I	
Ave ppmV	41.10	3.80	47.66	38.79	25.56	60.40	0.00	2.08	6.18	26.06	30.83	1		
C_NO	10.00	11.00) 10.00	10.00) 11.00	10.00) 10.00	11.00	11.00	10.00	12.00	7552.46	i	
ww	134.22	156.32	134.22	134.22	156.32	134.22	132.21	148.22	148.22	128.16	170.34			
стон	1.40	2.18	I 1.40	1.40	2.18	1.40) 1.20	1.45	i 1.45	0.80	2.17			
ppmv*cloh	57.58	6.29	66.78	54.35	55.80	84.61	0.00	3.02	8.99	20.85	66.84	13487.81		

